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1 Abstract.— Analysing multiple genomic regions while incorporating detection and 

2 qualification of discordance among regions has become standard for understanding 

3 phylogenetic relationships. In plants, which usually have comparatively large genomes, this is 

4 feasible by the combination of reduced-representation library (RRL) methods and high-

5 throughput sequencing enabling the cost effective acquisition of genomic data for thousands 

6 of loci from hundreds of samples. One popular RRL method is RADseq. A major 

7 disadvantage of established RADseq approaches is the rather short fragment and sequencing 

8 range, leading to loci of little individual phylogenetic information. This issue hampers the 

9 application of coalescent-based species tree inference. The modified RADseq protocol 

10 presented here targets ca. 5,000 loci of 300-600nt length, sequenced with the latest short-read-

11 sequencing (SRS) technology, has the potential to overcome this drawback. To illustrate the 

12 advantages of this approach we use the study group Aichryson Webb & Berthelott 

13 (Crassulaceae), a plant genus that diversified on the Canary Islands. The data analysis 

14 approach used here aims at a careful quality control of the long loci dataset. It involves an 

15 informed selection of thresholds for accurate clustering, a thorough exploration of locus 

16 properties, such as locus length, coverage and variability, to identify potential biased data and 

17 a comparative phylogenetic inference of filtered datasets, accompanied by an evaluation of 

18 resulting BS support, gene and site concordance factor values, to improve overall resolution 

19 of the resulting phylogenetic trees. The final dataset contains variable loci with an average 

20 length of 373nt and facilitates species tree estimation using a coalescent-based summary 

21 approach. Additional improvements brought by the approach are critically discussed.



22 Abbreviations:

23 BSC – between-sample-clustering

24 CA-ML – maximum likelihood analysis of concatenated loci

25 CB-SM – coalescent-based summary method

26 CT – clustering threshold

27 gCF – gene concordance factor

28 GTEE – gene tree estimation error

29 HTS – high throughput sequencing

30 ILS – incomplete lineage sorting

31 ISC – in-sample-clustering

32 ML – maximum likelihood

33 MSC – multi-species coalescent (model)

34 NPL – new polymorphic loci

35 PE – paired-end

36 PIC – parsimony informative character

37 PIS – parsimony informative site

38 RADseq – restriction site-associated DNA sequencing

39 REase – restriction endonuclease

40 RRL – reduced-representation library (methods)

41 sCF – site concordance factor

42 SNP – single nucleotide polymorphism 

43 SRS – short-read sequencing

44 SVD – SVDquartets

45 VAR – variable sites (sequence variation)

46 var – variability (VAR/locus length/number of samples)



47 1. INTRODUCTION

48 Resolving phylogenetic relationships of recently and rapidly radiating species 

49 complexes is a challenge because first, standard markers using universal primers are too 

50 conserved and fail to provide sufficient information, and second, inferring relationships is 

51 often complicated due to incomplete lineage sorting (ILS), hybridization/introgression and 

52 gene duplication/loss events (Pamilo and Nei, 1988; Maddison, 1997; Maddison and 

53 Knowles, 2006; Kubatko and Degnan, 2007; Whitfield and Lockhart, 2007; Degnan and 

54 Rosenberg, 2006, 2009; Heled and Drummond, 2009; Yang and Rannala, 2010; Rannala et 

55 al., 2020). Since different parts of the genome can have different evolutionary backgrounds, 

56 approaches analyzing multiple genomic regions have become the baseline for resolving such 

57 challenging lineages. The multi-species coalescent (MSC) model provides a natural 

58 framework for species tree inference that accounts for gene tree discordance due to ILS. 

59 However, full-coalescence approaches under the MSC are computationally very intensive 

60 when applied on large-scale genomic data and thus often not feasible (McCormack et al., 

61 2013a; Smith et al., 2014; Zimmermann et al., 2014). Other approaches, such as maximum 

62 likelihood analysis of concatenated multi-locus data (de Queiroz et al., 1995; Yang 1996; de 

63 Queiroz and Gatesy 2007), coalescent-based summary methods that estimate species trees 

64 from independently inferred gene trees (here called “locus trees”) (Mirarab et al., 2014a; 

65 Mirarab and Warnow, 2015; Rannala et al., 2020) or coalescent-based methods that use site 

66 patterns of assembled loci for species tree inference (Bryant et al., 2012; Chifman and 

67 Kubatkto, 2014; Bryant and Hahn, 2020), became increasingly popular and widely used. 

68 Despite their popularity, these methods each have advantages and disadvantages and their 

69 correct application to modern high-throughput data, in particular approaches that generate 

70 short loci with high amounts of missing data such as RADseq, is highly controversial.



71 High-throughput sequencing (HTS) technologies and lab workflows for sample 

72 preparation improved enormously during the last decade and provide the opportunity to 

73 generate extensive datasets for phylogenetic inference (reviewed in Good, 2012; Reuter et al., 

74 2015; Andrews et al., 2016; Mardis, 2017; McKain et al., 2018). Some of the most popular 

75 sample preparation protocols are grouped under the term reduced-representation library 

76 (RRL) preparation protocols, which are often combined with short-read sequencing (SRS). 

77 These methods target only a reduced subset of the studied genome for sequencing, therefore 

78 reducing computational complexity during assembly and analysis, facilitating a deeper 

79 sequencing depth per locus while increasing the number of samples included. The 

80 combination of both HTS and RRL enable simultaneous acquisition of genomic data of 

81 hundreds up to thousands of loci from dozens to hundreds of samples for systematic 

82 researchers and extend the questions and taxa that can be investigated tremendously. Widely 

83 used RRL approaches are hybridization capturing methods, e.g., on-array capture or in-

84 solution capture (Mamanova et al., 2010), Hyb-Seq (Weitemier et al., 2014), targeted 

85 sequence capture (Grover et al., 2012) and restriction-site associated DNA sequencing 

86 (RADseq; Miller et al., 2007; Baird et al., 2008). The term RADseq comprises several 

87 methods that all rely on the enzymatic digestion of genomic DNA for complexity reduction, 

88 followed by adapter ligation, further reduction by size selection (either direct or indirect) and 

89 high-throughput sequencing (reviewed in Andrews et al., 2016). The cross-over approach 

90 hyRAD by Suchan et al. (2016) combines RADseq with capturing using either biotinylated 

91 DNA- or RNA-probes (Schmid et al., 2017; Suchan, 2018) obtained from the enzymatically 

92 fragmented DNA resources of the target group itself. Yet, the lab workflow is quite complex 

93 and time consuming. Thanks to the modular principle of RADseq, the individual wet lab 

94 steps, restriction endonucleases (REase/s) and adapters can be modified as required (see also 

95 McCormack et al., 2013b; Andrews et al., 2016; McKain et al., 2018; Parchman et al., 2018). 

96 This flexible toolbox of cheap, fast and individually scalable wet lab modules, as well as the 



97 fact that no prior genomic information is required, paved the way for the success of RADseq 

98 methods in various fields of evolutionary research, particularly in non-model organisms (e.g., 

99 Eaton and Ree, 2013; Escudero et al., 2014; Harvey et al., 2016; Herrera and Shank, 2016; 

100 Razkin et al., 2016; de Oca et al., 2017; Dillenberger and Kadereit, 2017; Hamon et al., 2017; 

101 Curto et al., 2018; Wagner et al., 2018; Gerschwitz-Eidt and Kadereit, 2019; Paetzold et al., 

102 2019; Rancilhac et al., 2019; Hipp et al., 2020; Karbstein et al., 2020; Wagner et al., 2020; 

103 Buono et al., 2021). 

104 Despite these obvious benefits of RADseq, the approach poses some inherent 

105 challenges regarding the wet lab workflow, sequence assembly, data set processing and the 

106 application of coalescent-based species tree inference. Characteristically, RADseq datasets 

107 comprise relatively short loci (typically 100–250nt) and a high proportion of missing data 

108 (Ree and Hipp, 2015; Andrews et al., 2016; Eaton et al., 2017; Lee et al., 2018; McKain et al., 

109 2018). The average fragment length obtained (and locus length assembled) depends on the 

110 degree of genomic reduction, which in turn depends on the REase/s chosen, the selected size 

111 segregation window and the genome size of the study group. To some extent, missing data 

112 (absence of data or missingness) in RADseq data is inherently expected due to mutations of 

113 the REase-specific recognition sites (Rubin et al., 2012; Eaton et al., 2017; Lee et al., 2018). 

114 Technical causes for missingness include: varying DNA quantity and quality, size selection 

115 artifacts, PCR bias or low sequencing depth and quality. All of these factors influence the 

116 average information content per locus and the uniformity with which it is distributed across 

117 taxa, consequently limiting the applicability of inference methods (Gatesy and Springer, 

118 2014; Xi et al., 2015; Xu and Yang, 2016; Eaton et al., 2017; Sayyari et al., 2017; Lee et al., 

119 2018; Molloy and Warnow, 2018).

120 RADseq is particularly appealing for studying non-model taxa, as large genome-sized 

121 datasets can be generated quickly and cost-effectively and assembled without requiring a 



122 reference genome. However, de novo assembly and data processing can also be a major 

123 challenge. The bioinformatics effort related to RADseq data is often not straightforward and 

124 can heavily impact the assembly outcome regarding differentiation of orthologs and paralogs, 

125 as well as the quantity of recovered loci, sequence variation (VAR), single nucleotide 

126 polymorphisms (SNPs) and parsimony informative sites (PIS), respectively (Rubin et al., 

127 2012; Ilut et al., 2014; Harvey et al., 2015; Shafer et al., 2017; Lee et al., 2018). To facilitate 

128 data processing, assembly pipelines such as Stacks (Catchen et al., 2013), dDocent (Puritz et 

129 al., 2014) and ipyrad (Eaton and Overcast, 2020) have been developed. These pipelines 

130 implement several main steps. 1) In-sample-clustering (ISC), in which reads within each 

131 sample are grouped by sequence similarity into putative loci. 2) Consensus calling of allele 

132 sequences from clustered reads. 3) Between-sample-clustering (BSC) of consensus sequences 

133 of all loci across all samples are clustered by sequence similarity to generate putatively 

134 homologous loci. 4) Data filtering based on given thresholds such as the number of samples 

135 per locus required (locus coverage) or the maximum proportion of shared heterozygous sites 

136 in a locus (detection of potential paralogs). To determine which reads represent the same 

137 genomic locus, a clustering threshold (CT) based on sequence similarity is used. Yet, genetic 

138 variation within the target genomes and across the studied taxa makes it difficult to find an 

139 appropriate CT (Rubin et al., 2012; Catchen et al., 2013; Hirsch and Buell, 2013; Ilut et al., 

140 2014; Harvey et al., 2015; Ilut et al., 2014; Paris et al., 2017; Shafer et al., 2017; Lee et al., 

141 2018; McCartney-Melstad et al., 2019). Both over- and undermerging are major issues in 

142 RADseq datasets, affecting ISC and BSC and therefore the resulting datasets. To ensure the 

143 homology of the assembled loci (Springer and Gatesy, 2018; McCartney-Melstad et al., 2019; 

144 Fernández et al., 2020; Simion et al., 2020), detailed evaluations of dataset metrics are used to 

145 find balanced dataset-specific CTs for ISC and BSC (e.g. Ilut et al., 2014; Mastretta-Yanes et 

146 al., 2015; McKinney et al., 2017; Paris et al., 2017; McCartney-Melstad et al., 2019). 

147 Approaches to facilitate this problem aim at the determination of suitable CTs for homology 



148 assessment by analyzing trends of several assembly metrics over a wide range of tested CTs 

149 (hereafter referred to as “CT selection approach”). This is accomplished by plotting the 

150 metrics as a function of the CT range and searching for a region that avoids over- and 

151 undermerging areas and that provides an accurate clustering for the majority of loci (hereafter 

152 referred to as “transition zone”). This transition zone is assumed to minimize the assembly of 

153 paralogs, to maximize the yield of sequence variation, and to form the smallest distance 

154 among taxa (Ilut et al., 2014; Mastretta-Yanes et al., 2015; McCartney-Melstad et al., 2019). 

155 In other words: an informed selection of dataset-specific CTs yields maximum phylogenetic 

156 information with minimum missingness and least paralogs. Still, such CT selection 

157 approaches have to be taken with care because 1) the determined CT (for ISC and BSC) can 

158 never represent all taxa equally well and 2) all other chosen assembly parameters affect the 

159 outcome (Shafer et al., 2017; McCartney-Melstad et al., 2019).

160 Phylogenetic inference of assembled RADseq data presents the next challenge because 

161 the data properties often limit the choice of methods. Added to this is an ongoing, intense 

162 debate on the utilization of phylogenetic inference methods. The focus is mainly on: 1) the 

163 statistical consistency under the MSC, 2) the evolutionary framework to which the methods 

164 are applied (e.g. hybridization, horizontal gene transfer, ILS), and 3) the estimation accuracy 

165 under varying dataset conditions (e.g. linkage, phylogenetic information content, missingness, 

166 homology of data), leading to constant re-analyses and comparisons of simulated and 

167 empirical data to proof the diverging concepts (e.g. de Queiroz and Gatesy 2007; Edwards et 

168 al., 2007, 2016; Kubatko and Degnan 2007; Degnan and Rosenberg, 2009; Leaché and 

169 Rannala, 2011; Song et al., 2012; Bayzid and Warnow, 2013; Wu et al., 2013; Gatesy and 

170 Springer, 2013, 2014; Springer and Gatesy 2014, 2016, 2018; Mirarab et al., 2014a,b, 2015, 

171 2016; Chou et al., 2015; Roch and Steel 2015; Mendes and Hahn, 2018; Molloy and Warnow, 

172 2018; Bryant and Hahn, 2020; Rannala et al., 2020). This somewhat amusing and abstruse 

173 debate, with sometimes remarkably tailored data for proof, complicates the search for 



174 appropriate phylogenetic inference methods for RRL-SRS data. Fact is that the locus 

175 properties are pivotal for selecting appropriate species tree inference methods. Due to the 

176 short fragment length, RADseq loci are generally assumed to lack sufficient phylogenetic 

177 information to generate locus trees as input for coalescent-based summary methods (Rubin et 

178 al., 2012; Gatesy and Springer, 2014; Xi et al., 2015; Hosner et al., 2016; Molloy and 

179 Warnow, 2018). 

180 Gene-tree-based coalescent methods (summary methods; hereafter referred to as CB-

181 SM) are a favorable choice for phylogenetic inference of rather long and informative loci 

182 (Mirarab et al., 2014a, 2015; Vachaspati and Warnow, 2015; Xu and Yang, 2016; Molloy and 

183 Warnow 2018; Rannala et al., 2020). CB-SM infer species trees by a two-step system: 

184 individual gene trees are estimated, and their summary statistics are then used as data input 

185 for species tree estimation. While CB-SM are becoming popular for their ability to handle 

186 large amounts of data in a short time, they are best known for their sensitivity to gene tree 

187 estimation error (GTEE). When applied to datasets composed of short loci of little individual 

188 phylogenetic information and a high proportion of missingness, as is characteristic of 

189 RADseq datasets, the effect on estimation accuracy can get quite severe (Chou et al., 2015; 

190 Roch and Warnow, 2015; Xi et al., 2015; Xu and Yang, 2016; Sayyari et al., 2017; Molloy 

191 and Warnow, 2018). Therefore, the focus on the effects of filtering loci for specific properties 

192 prior to gene and species tree estimation is becoming increasingly relevant (e.g. Lanier et al., 

193 2014; Chen et al., 2015; Xi et al., 2015; Hosner et al., 2016; Huang and Knowles 2016; 

194 Simmons et al., 2016;  Sayyari et al., 2017; Molloy and Warnow 2018).  

195 Coalescent-based site-based methods are another option for species tree inference 

196 (Bryant et al., 2012; Chifman and Kubatko, 2014; Xu and Yang, 2016). Such approaches 

197 bypass the generation of locus trees by generating the species tree directly from all given site 

198 patterns, thus avoid the issue of GTEE. The sites are required to have individual histories or at 



199 least very little linkage. Violation of this assumption leads to a statistically inconsistent 

200 species tree estimate (Bryant et al., 2012; Chifman and Kubatko 2014; Xu and Yang, 2016). 

201 Under certain challenging data conditions, site-based methods were found to be more accurate 

202 than gene tree-based summary (Chou et al., 2015; Long and Kubatko, 2018; Molloy and 

203 Warnow, 2018). 

204 RADseq data are most commonly analyzed using maximum likelihood analysis of a 

205 concatenated supermatrix (hereafter referred to as CA-ML) (Yang, 1996; de Queiroz and 

206 Gatesy, 2007; Rubin et al., 2012). In case of CA-ML, several thousand loci are treated as one 

207 locus that evolved under a single evolutionary history. This is violating the MSC and may 

208 theoretically lead to poorly resolved, incomplete, or positively misleading species tree 

209 estimates (Degnan and Rosenberg, 2006, 2009; Kubatko and Degnan, 2007; Knowles, 2009; 

210 Roch and Steel, 2015, Xu and Yang, 2016; Mendes and Hahn, 2018; Rannala et al., 2020). In 

211 addition, bootstrapping is also commonly performed across the entire supermatrix, potentially 

212 resulting in spuriously high support values caused by the sheer dataset size (Kubatko and 

213 Degnan, 2007; Kumar et al., 2012; Rubin et al., 2012; Liu et al., 2015; Wang et al., 2017, 

214 Minh et al., 2020a). Still, it also has been shown that CA-ML can be comparably or more 

215 accurate than coalescent-based methods under various conditions of linkage, locus length, 

216 information content, missingness, ILS and GTEE (Mirarab et al., 2014a; Chou et al., 2015; 

217 Roch and Warnow, 2015; Mirarab et al., 2016; Springer and Gatesy, 2016; Long and 

218 Kubatko, 2018; Molloy and Warnow, 2018).

219 Despite the ongoing debate about the pros and cons of approaches to sequence 

220 generation, data assembly, phylogenetic inference, and, the assumption that RAD data do not 

221 favor coalescent-based summary methods, we think there is a need to take advantage of the 

222 significant methodical progress made in the last decade and explore their potential for 



223 practical use. Our objective is to test whether longer RADseq loci enable coalescent-based 

224 species tree inference, and to provide advice on how to handle and analyze challenging data.

225 We modified several modules of the RADseq toolbox to obtain a library containing a 

226 small number of fragments (ca 5,000 assembled loci), with lengths of ca. 300-600nt, 

227 sequenced with the latest SRS technology (Illumina MiSeq v3 kit, 300nt PE) and applied this 

228 protocol (Fig. 1) to the plant genus Aichryson Webb & Berthel. (Crassulaceae), a rapidly 

229 radiated yet relatively small genus distributed in Macaronesia, for which standard sanger 

230 sequenced markers failed to provide a resolved phylogeny (Fairfield et al., 2004). The data 

231 analysis (Fig. 2) included a CT selection approach to facilitate an informed choice of suitable 

232 CTs for ISC and BSC during de novo assembly (Fig. 3) and an exploratory approach to 

233 determine the properties of the assembled loci, with respect to locus coverage (missingness), 

234 locus variability (phylogenetic information) and locus length, and thus their suitability as 

235 input for CB-SM (Fig. 4). We compared the phylogenetic outcome of this assembly using 

236 CA-ML (RAxML by Stamatakis, 2014), CB-SM (ASTRAL III by Zhang et al., 2018) and put 

237 it in perspective to the site-based approach SVDquartets by Chifman and Kubatko (2014). To 

238 assess the phylogenetic results, we also evaluated the resulting BS support values relative to 

239 gene and site concordance factors that were calculated using IQ-TREE (Minh et al., 2020a, b). 



240 2. MATERIALS AND METHODS

241 2.1 Study group, sampling and DNA extraction

242 Together with Monanthes Haw. and Aeonium Webb & Berthel., Aichryson belongs to 

243 the Macaronesian tribe Aeonieae of the Crassulaceae family (Eggli, 2008). The genus 

244 comprises 15 species with the centre of diversity on the Canary Islands (11 species; Bañares, 

245 2002, 2015a, 2017), three species on Madeira, and one species on the island of Santa Maria in 

246 the Azores (Moura et al., 2015). Aichryson is divided into two sections, sect. Aichryson and 

247 sect. Macrobia Webb & Berthel. Section Macrobia includes only Aichryson tortuosum 

248 (Aiton) Webb & Berthel., a perennial, small shrub endemic to Lanzarote (subsp. tortuosum) 

249 and Fuerteventura (subsp. bethencourtianum Botte & Bañares). All other species belong to 

250 sect. Aichryson and are monocarpic, mostly annual herbaceous plants (Bañares, 2015a). 

251 Within sect. Aichryson several natural hybrids are described (Bañares 2015b). Aichryson 

252 proved to be monophyletic and likely sister to Monanthes icterica (Webb ex Bolle) Christ in 

253 molecular phylogenetic studies on Aeonieae based on cp markers and ITS (Mort et al., 2002; 

254 Fairfield et al., 2004). The genus comprises both diploid and tetraploid species (Uhl, 1961; 

255 Suda et al., 2005). 

256 We sampled a total of 29 individuals representing 14 species of Aichryson (only A. 

257 santa-mariensis M.Moura, Carine & M.Seq. is missing) and two accessions of Monanthes 

258 icterica as outgroup (Supplementary Table 1, “sampling”). For 20 samples we were able to 

259 assess the ploidy level on a CyFlow cytometer (PARTEC) using the isolation buffer “OTTO 

260 I” (2.1 g Citric-acid-1-hydrat, 10 ml 5% Triton X-100, 90 ml ddH2O). FloMax v2.8.2 (QA 

261 GmbH, Münster, Germany) was used for the particle analysis and the measurement of the 

262 peaks (Table S1, “flow cytometry”). For the remaining samples, published ploidy levels were 

263 incorporated (Uhl, 1961; Suda et al., 2005). 



264 DNA-extraction was conducted using the DNeasy Plant Mini-Kit (QIAGEN, Venlo, 

265 Netherlands) according to the manufacturer’s protocol for “Purification of Total DNA from 

266 Plant Tissue (Mini Protocol)” with a number of modifications outlined in the online Appendix 

267 1. The DNA concentration and quality were evaluated using a NanoDrop 1000 

268 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA), a Qubit 3.0 Fluorometer 

269 (Thermo Fisher Scientific, Waltham, MA, USA) and gel electrophoresis. 

270 2.2 In silico digestion, restriction enzyme choice and adapter design

271 The search for suitable restriction enzymes for our approach was performed in silico 

272 and based on 1) the desired fragment length (300-600nt), 2) the number of samples per library 

273 (up to 50), 3) the expected sequencing output of the MiSeq v3 kit (up to 25 Million), and 4) 

274 the targeted sequencing depth (aimed at ~10× per fragment), leading to the required fragment 

275 yield of 5,000 within the target length range. Initially we tested commonly used REases 

276 individually. However, the REases tested did not meet our requirements, thus we tested 

277 combinations of two REases each. For this, we have taken into account a minimum length of 

278 6nt for the recognition site and the simultaneous applicability of two REases in a single 

279 reaction. The in silico digestion was performed using the software CLC genomics Workbench 

280 v9.5.5 (Qiagen) with its included “Restriction Site Analysis” for several genomes of various 

281 focal groups including Beta vulgaris L., Amaranthaceae (BioProject PRJNA41497) and 

282 Kalanchoe fedtschenkoi Raym.-Hamet & H.Perrier, Crassulaceae (BioProject 

283 PRJNA397334). The resulting restriction maps were evaluated with respect to fragments 

284 showing two cut sites within the desired length window of 300-600nt. Among other suitable 

285 REase combinations, the REases BamHI (G’GATCC) and KpnI (GGTAC’C) best met our 

286 criteria for a double digest (for excerpts of the REase selection, see also Supplementary Table 

287 S2, “in silico digest”). In case of Aichryson, the in silico digest of the distantly (yet closest) 

288 related K. fedtschenkoi genome (divergence to Aeonieae is roughly 58.60 [44.60–73.62] mya, 



289 Messerschmid et al., 2020), resulted in 61,692 fragments, of which 4,429 fragments fell in the 

290 targeted length range. 

291 In contrast to widely established strategies (Elshire et al., 2011; Peterson et al., 2012; 

292 Andrews et al., 2016), we aimed at sequencing all generated fragment types, including 

293 fragments framed by identical restriction motifs. Thus, we designed the barcode and common 

294 adapters for both REases motifs (Table S2, “BamHI adapter”, “KpnI adapter”). The barcode 

295 sequences were obtained from Elshire et al. (2011) and van Gurp (2017). Both barcode and 

296 common adapter fit to the overhang of the BamHI and KpnI cut sites (Fig. 1b). We were able 

297 to achieve the set aim with this design, however, we recommend a more flexible 

298 adapter/indexing strategy that accounts for technical bias during wet lab and sequencing (e.g. 

299 MacConaill et al., 2018; Bayona-Vásquez et al., 2019).

300 2.3 RADseq

301 The major changes compared to other RADseq approaches such as ddRADseq 

302 (Peterson et al., 2012) or Genotyping by Sequencing (GBS; Elshire et al., 2011) are: the usage 

303 of two rare cutter REases that produce c. 5,000 fragments within a target range of 300-600nt 

304 (Fig. 1a), adapters binding to all generated fragments (Fig. 1b), an extended size selection 

305 range (Fig. 1d) and an extra size selection step during the final purification (Fig. 1f). In 

306 particular the two size selections were important to fully exploit the sequencing range (see 

307 also Appendix 1, Fig. A1.6, A1.7). Since the RADseq toolbox includes many modifiable 

308 modules, various protocols might be capable of generating libraries/datasets of an extended 

309 length range and we encourage an impartial testing of this potential (see also: McCormack et 

310 al., 2013b; Andrews et al., 2016; McKain et al., 2018; Parchman et al., 2018). The following 

311 is a brief overview of the workflow. For the detailed protocol, see Appendix 1 and 

312 Supplementary Table S3.

313



314 2.3.1 RADseq lab workflow

315 We used 200ng genomic DNA as input for the double digest reaction (Fig. 1a), which 

316 was followed by adapter ligation (Fig. 1b) in the same reaction tube. For thorough saturation 

317 of cut sites, 6µl adapter working solution (0.5ng/µl) containing equimolar amounts each motif 

318 pair were used. Reactions were incubated for 3 hours at 37°C, respectively. The libraries were 

319 multiplexed using 100ng DNA each (Fig. 1c), followed by a column-based cleaning of the 

320 pool. Size selection (Fig. 1d) was performed using Pippin Prep (Sage Science, Beverly, MA, 

321 USA) with a segregation range of 350-720nt. The size-selected products were amplified using 

322 a low-cycle 2-step PCR protocol (Fig. 1e). Subsequently, PCR products were collected in 

323 three pools (Table S3), purified and quantified. Final purification, accompanied by the 2nd size 

324 segregation, was done using the NucleoMag NGS kit (Macherey-Nagel, Düren, Germany) 

325 with a ratio of 0.8 bead suspension to one part library. The purified library was resuspended in 

326 25 µl Buffer AE for sequencing. 

327 2.3.2 Library quality assessment and sequencing

328 Library quality was validated by measuring the DNA concentration by Qubit 

329 Fluorometer and assessing the fragment distribution by Bioanalyzer electropherogram 

330 (Appendix 1). Sequencing was performed on an Illumina MiSeq (San Diego, CA, USA; 

331 Reagent Kit v3 600-cycle) at StarSEQ (Mainz, Germany) producing 300nt PE reads in three 

332 different runs (Supplementary Table S4). 

333 2.4 Data assembly

334 2.4.1 Raw sequence treatment

335 Raw data quality was assessed with FastQC 0.11.4 (Andrews, 2010; Fig 2a; Table S4 

336 “run I-III”). Raw reads were demultiplexed (Table S2 and S3) using ipyrad v0.9.52 (Eaton 

337 and Overcast, 2020) twice, once for each REase cut site (Fig. 2a). This two-fold 



338 demultiplexing was necessary due to the motifs occurring on both read directions. The fastq-

339 files were combined and adapter sequences were removed with Cutadapt 1.18 (Martin, 2011). 

340 FastQC reports of the demultiplexed/adapter trimmed samples were combined using MultiQC 

341 v1.9 (Ewels et al., 2016; Table S4 “mean quality scores”).

342 2.4.2 ipyrad

343 We used ipyrad v0.9.52 (Eaton and Overcast, 2020) for de novo RADseq assembly. 

344 Several filtering parameters of the ipyrad pipeline (v9 or above, Eaton and Overcast 2020) 

345 represent percentages, allowing the application of the selected thresholds to variable read 

346 lengths and thus supporting clustering of datasets obtained by a broad sequencing range. We 

347 used default parameters, except for the ones outlined below.

348 2.4.3 Assembly parameter settings

349 The de-multiplexed samples were split into two groups according to ploidy level (di- 

350 or tetraploid; Table S1). The diploid dataset contained nine Aichryson samples, the tetraploid 

351 dataset contained 18 Aichryson and two Monanthes icterica samples. Parameter #18 

352 (max_alleles_consens) was set to two and four, respectively (Supplementary Table S5). With 

353 respect to the extended read length, we allowed up to 24 indels per locus (parameter #23). We 

354 assumed increased gene flow and set parameter #24 to 0.7 (Bañares, 2015b; 

355 max_Hs_consens). Parameters #11 and #12, which give the minimum depth for statistical and 

356 majority rule base calling, were set to 10. We aimed at an average cluster depth 

357 (avg_depth_mj) of >20× for statistical base calling (Pamilo et al., 2011; Eaton and Overcast, 

358 2020).

359 2.4.4 Selection of suitable clustering thresholds for ISC and BSC

360 Avoiding both, over- and undermerging of putative loci is not trivial in high-throughput 

361 datasets. If the selected CT is too lax, paralogous reads will be incorrectly clustered and 



362 treated as orthologs (overmerging) and if the selected CT is too strict, reads belonging to an 

363 actual locus will incorrectly be split into several loci (undermerging) with low variability 

364 (Supplementary Figure S1.A). To determine suitable CTs for ISC and BSC, we used several 

365 CT selection approaches as guidance (Ilut et al., 2014; Mastretta‐Yanes et al., 2015; Paris et 

366 al., 2017; McCartney-Melstad et al., 2019) and defined the assumptions to determine suitable 

367 CTs. 1) Over- and undermerging ranges have to be identified to avoid merging/splitting 

368 effects within these areas. 2) Overmerging is indicated by highly heterozygous clusters/alleles 

369 with a high proportion of filtered paralogs (Ilut et al., 2014; McCartney-Melstad et al., 2019). 

370 Hence, a suitable CT is expected in an increasing area of heterozygosity and a decreasing area 

371 of flagged paralogs, between the maxima of both metrics. 3) Undermerging of orthologs leads 

372 to an increased number of loci (and lower locus coverage in ISC, lower sample coverage per 

373 locus in BSC) while sequence divergence among taxa decreases (Mastretta‐Yanes et al., 2015; 

374 McCartney-Melstad et al., 2019). Thus, sequence variation declines while missingness 

375 increases. A suitable CT is expected near a steep increase in number of clusters/loci and 

376 amount of missingness while heterozygosity is biologically realistic (ISC) and locus 

377 variability is high (BSC).

378 To prevent introducing a potential bias due to ploidy, we split the samples into two 

379 groups (di- and tetraploid) for ISC assembly (ipyrad assembly steps 1-5, Fig. 2b). Following 

380 ISC CT selection, all samples were merged for BSC (ipyrad assembly steps 6 and 7). A CT 

381 range of 0.81-0.99 (in 0.01 increments) was tested. To assess the abovementioned criteria for 

382 CT selection, we plotted a variety of metrics as a function of the tested CT range as box- and 

383 scatter plots (see also Figure S1.B and S1.C). For the ISC CT selection, we evaluated the 

384 number of clusters (clusters_total), the average read depth (avg_depth_total), the number of 

385 filtered paralogs (filtered_by_maxH) and the heterozygosity. For the BSC CT selection, we 

386 additionally evaluated the number of retained loci, sequence variation (VAR, SNPs and PIS) 

387 and proportion of missingness (sequences_missing). In addition, we calculated the “new 



388 polymorphic loci” (NPL) in order to detect the assembly containing most accurately clustered 

389 sequence variation, which is indicated by the so-called “hockey stick signal” (Paris et al., 

390 2017). We expected the transition zone from over- to undermerging to be characterized by 

391 trend changes, e.g. prominent differences in the medians of adjacent CTs and compressions or 

392 expansions of the quartiles (in boxplots) or changes in the slope intensity (in scatter plots). 

393 Multiple suitable CTs within a transition zone of a metric and across metrics were averaged to 

394 determine a consensus CT.

395 2.4.5 Processing of the unfiltered ipyrad assembly

396 The ipyrad loci-file of the unfiltered “raw” assembly was parsed with a custom Perl 

397 script (available on GitHub https://github.com/philipphuehn/RADseq-locus-filtering) for the 

398 specific locus ID, the length, the number of samples, SNPs and PIS (VAR in total) and the 

399 proportion of missingness for each locus (Fig. 2c “parsing of locus properties”). We used 

400 BLAST+ 2.7.1 (Camacho et al., 2009) to identify chloroplast loci by blasting all loci against 

401 four reference plastomes from the Crassulaceae (GenBank accessions: Sedum uniflorum 

402 subsp. oryzifolium (Makino) H.Ohba: NC_027837, Sedum sarmentosum Bunge: NC_023085, 

403 Phedimus takesimensis (Nakai) 't Hart: NC_026065, Phedimus kamtschaticus (Fisch. & 

404 C.A.Mey.) 't Hart: NC_037946). Loci of a plastid origin as well as loci showing no parsimony 

405 informative sites were removed (Fig. 2c, “0 PIS + cp loci removal”). In addition, this “raw” 

406 assembly was used for initial phylogenetic inference and clade definition to compare 

407 potentially different phylogenetic results from subsequently filtered datasets (see 3.4.1).

408 2.5 Locus filtering and dataset selection

409 In general, phylogenetic inference by CB-SM is very sensitive to GTEE, which most 

410 often is caused by loci showing little sequence variation, high missingness or fractional 

411 coverage (Chou et al., 2015; Roch and Warnow, 2015; Xi et al., 2015, 2016; Xu and Yang, 

412 2016; Sayyari et al., 2017; Hosner et al., 2016; Lee et al., 2018; Molloy and Warnow, 2018). 



413 We filtered the here generated RADseq loci into several sub-datasets to test for a potential 

414 influence of locus properties on phylogenetic inference (Fig. 2c, “locus filtering”).  First, we 

415 determined the impact of the locus properties on CB-SM reconstruction (see 2.5.1). This 

416 filtering approach suggested a potential impact of biased phylogenetic signal due to non-

417 randomly distributed partial taxon coverage (Sanderson et al., 2010, 2011, 2015; Simmons, 

418 2012; Xi et al., 2015; 2016; Hosner et al., 2016; Sayyari et al., 2017; Dobrin et al., 2018). 

419 This so-called “biased missingness” has been shown to cause high GTEE, thus results in 

420 conflicting, unsupported locus trees and consequently in a decline of species tree estimation 

421 performance (Xi et al, 2015, 2016; Hosner et al., 2016; Sayyari et al, 2017; Molloy and 

422 Warnow, 2018). We therefore performed a second locus filtering with respect to locus length 

423 and evaluated phylogenetic patterns of CB-SM and CA-ML reconstructions (see 2.5.2). The 

424 locus filtering scripts are available at GitHub (https://github.com/philipphuehn/RADseq-

425 locus-filtering).

426 2.5.1 Locus filtering by coverage, variability, length intervals and dataset selection based on 

427 average missingness

428 The loci were filtered with respect to the average variability (var=VAR/locus 

429 length/number of samples; “min_var”), minimum number of samples per locus (number of 

430 samples/locus; “min_samples”), and locus length intervals (“length_int”) and rearranged to 

431 new sub-datasets (Fig. 2c, “locus filtering”, Supplementary Table S6). For the “min_var” sub-

432 datasets, seven thresholds were used (0.01, 0.25, 0.50, 0.75, 1.0, 2.0, 3.0, “min_var_001” – 

433 “min_var_300”). Six thresholds by increments of four were used for the “min_samples” sub-

434 datasets (4, 8, 12, 16, 20, 24, “min_samples_4” – “min_samples_24”). The locus length 

435 interval datasets were created based on eight intervals starting from the minimum length to 

436 250nt, and then ranging by 50nt steps from 251nt to 550nt, and 551nt to the maximum length 

437 (“int_min-250” – “int_551-max”). Properties of these datasets, such as the total number of 



438 loci, VAR, SNPs, PIS (average per locus), sample coverage/missingness, and average locus 

439 length were recorded (Fig. 2c, “sub-dataset properties summary”). For each rearranged sub-

440 dataset, ML locus trees were estimated and used for CB-SM inference (see 2.6.2). We 

441 recorded the bootstrap support values of all branches of each tree and assigned them to three 

442 categories: backbone, clade and within clade branch support values. Clade branches contained 

443 all samples of the defined clades (see 3.4.1 for clade definition). All support values within the 

444 defined clades were assigned to within clade branches. All other support values, spanning 

445 from the outgroup to the clade branches, were recorded as backbone support values. Topology 

446 changes and conflicts were not accounted for. Based on this and on recommendations by 

447 studies investigating the impact of locus filtering for summary methods (Xi et al., 2016; 

448 Sayyari et al., 2017; Molloy and Warnow, 2018), we selected an average missingness 

449 threshold to filter the locus sets (Fig. 2c, “dataset selection avg. missingness”). The resulting 

450 dataset was subsequently used for comparative phylogenetic inference (Fig. 2d).

451 2.5.2 Locus filtering by length and dataset selection based on sub-dataset properties and 

452 phylogenetic patterns

453 In order to narrow down the suspected dataset bias in terms of fractional, non-random 

454 locus and/or taxon coverage, we used phylogenetic patterns to assess sub-datasets filtered by 

455 length. CA-ML inference of datasets exhibiting this type of bias can result in unsupported or 

456 overly high supported polytomies resolved as a terraced topology (Sanderson et al., 2010, 

457 2011, 2015; Simmons et al., 2012; Dobrin et al., 2018). Dobrin et al. (2018) have reported 

458 numerous empirical multi-locus datasets to be impacted by this issue (e.g. Springer et al., 

459 2012; Burleigh et al., 2015; Shi and Rabosky, 2015). Since we generated ML locus trees as 

460 input for species tree estimation with CB-SM, we assumed this terraced topology to also 

461 appear if the bias of the underlying data was strong. Besides, Hosner et al. (2016) and Sayyari 



462 et al. (2017) found that a high proportion of fragmentary data (biased incongruence of locus 

463 trees) can lead to a sharp drop of the resulting BS support values for CB-SM inference. 

464 In addition to the length interval sub-datasets of the first filtering (“int_min-250” – 

465 “int_551-max”), we filtered the loci requiring an increasing, cumulative maximum length 

466 (Fig. 2c, “locus filtering”, Supplementary Table S7). The eight maximum locus length sub-

467 datasets were generated starting at a threshold of 250nt (“max_250”, all loci up to 250nt 

468 length were included) increasing by 50nt increments up to the maximum locus length. Each 

469 sub-dataset was subjected to phylogenetic inference using CA-ML and CB-SM. The sub-

470 dataset properties and resulting BS support values were recorded as described in 2.5.1. 

471 While bootstrapping across a concatenated matrix almost automatically increases the 

472 resulting support values with increasing matrix size (Kubatko and Degnan, 2007; Liu et al., 

473 2015; Minh et al., 2020a), the multi-locus bootstrapping used with CB-SM employs a 2-stage 

474 system that accounts for variations among loci by resampling during BS calculation (Seo, 

475 2008) and thus reacts very sensitive to fragmentary data (Xi et al., 2015, 2016; Hosner et al., 

476 2016; Sayyari et al., 2017). We expected the BS support values to collapse as soon as the ratio 

477 of biased to unbiased data (respecting a non-randomly distributed partial taxon coverage) 

478 became too high. For CA-ML, we expected a similar but less sensitive pattern, in particular 

479 for the sub-datasets of an increasing maximum locus length. 

480 For the evaluation of a terrace-like topology pattern, the number of samples resolved 

481 on terraced branches was recorded. We defined that a terraced branch must either -originate 

482 from a dichotomous branch of the tree’s backbone, - the clade’s backbone containing that 

483 sample, - or must follow an individual branch within a clade, - but must not be included 

484 within a dichotomous constellation. For instance, phylogenetic inference of the “raw” dataset 

485 using CA-ML, CB-SM and SVD resulted in two, five and three terraced branches for clade 5, 

486 respectively (Supplementary Figure S2). The SVD tree contained another terraced branch in 



487 clade 4, but the CA-ML and CB-SM trees did not. By increasing the maximum locus length 

488 required, we expected the topology to switch from a terraced to a dichotomous tree pattern 

489 once the biased area has been passed or compensated (and vice versa). CB-SM was expected 

490 to react more sensitive than CA-ML due to the reduced amount of data, with individual gene 

491 trees as input (Xu and Yang, 2016). Therefore, the terraced pattern was assumed to be over-

492 expressed once the amount of data became too small (in particular for the length interval sub-

493 datasets), and likewise a larger portion of unbiased data would be needed for compensation 

494 (for the maximum length sub-datasets). 

495 The dataset, which was intended to be a reasonable compromise for both methods, had 

496 to meet the following criteria: 1) relatively low average missingness, 2) relatively high ratio 

497 of PIS to SNPs, 3) relatively high BS support values for all tree sections, 4) relatively low 

498 number of samples resolved on terraced branches, 5) and had to avoid over- and under-

499 represented assembly regions. The selected dataset was used for comparative phylogenetic 

500 inference (Fig. 2d). 

501 2.5.3 Generating ‘short’ loci by locus truncation

502 The loci of the ipyrad “raw” assembly were truncated to one third of their original 

503 length to compare potential performance differences of the here generated loci to a RAD 

504 dataset obtained by assembly of 100nt PE reads. These shorter loci were intended to show less 

505 sequence variation and thus negatively affect phylogenetic inference. The truncated loci were 

506 re-arranged based on the selected datasets of the locus filtering (Table 1, Fig. 2c, “locus 

507 truncation”).

508



509 2.6 Phylogenetic inference

510 We have chosen three commonly used approaches for phylogenetic inference of the 

511 generated main- and sub-datasets (Table 1, S6 and S7). CA-ML and CB-SM were used for 

512 inference during locus filtering. For the comparative phylogenetic inference, we additionally 

513 used SVDquartets as third inference approach. We decided not to test a full-coalescent 

514 method that uses co-estimation of locus trees and species trees such as implemented in BEST 

515 (Liu, 2008) or BEAST 2 (Bouckaert et al., 2014) because computation time and capacities 

516 required increase sharply with the number of loci and samples. Thus, full-coalescent methods 

517 are currently not practical for large-scale datasets with thousands of loci (e.g. Bayzid and 

518 Warnow, 2013; McCormack et al., 2013a; Zimmermann et al., 2014). 

519 2.6.1 Phylogenetic inference with RAxML (CA-ML)

520 We used RAxML v8.2.12 (Stamatakis, 2014) to infer maximum likelihood 

521 phylogenies using GTRGAMMA as substitution model, 20 runs for BestML and 1,000 

522 bootstrap replicates to assess statistical support of relationships. We used the unfiltered ipyrad 

523 supermatrix for inference of the “raw” assembly. For all other datasets, we concatenated 

524 individual loci to a supermatrix using FASconCAT v1.11 (Kück and Meusemann, 2010). 

525 2.6.2 Species tree inference with ASTRAL-III (CB-SM)

526 ASTRAL-III v5.7.4 (Zhang et al., 2018) estimates species relationships based on 

527 gene/locus trees. To generate these locus trees, we used RAxML v8.2.12 (Stamatakis, 2014) 

528 under the GTRGAMMA model with 20 runs for BestML and 1,000 bootstrap replicates. 

529 ASTRAL was run in default mode using unrooted locus trees. We used multilocus 

530 bootstrapping (Seo, 2008) to compute branch support for the estimated species trees. 

531



532 2.6.3 SVDquartets analysis (SVD)

533 SVDquartets (Chifman and Kubatko, 2014) is a quartet-based algorithm to compute 

534 species trees from SNP datasets. We used FASconCAT-G (Kück and Longo, 2014) to extract 

535 and concatenate the 25,320 parsimony informative characters (polymorphisms that are shared 

536 by at least two samples, PICs) of the 3,818 loci constituting the “raw” assembly. To meet the 

537 requirement for linkage of the dataset (sites must be unlinked), we randomly selected a single 

538 PIC of each informative locus for each dataset (Table 1, “unlinked PICs”). Analyses were run 

539 in SVDquartets as implemented in PAUP*4.0a168 (Swofford, 2003) with 1,000 bootstrap 

540 replicates under the multilocus bootstrap (Seo, 2008). The scripts for generating PIC datasets 

541 are available at GitHub (https://github.com/philipphuehn/RADseq-locus-filtering).

542 2.6.4 IQ-TREE analysis

543 We used IQ-TREE v2.1.2 (Minh et al., 2020a, b) to calculate the gene (gCF) and site 

544 concordance factors (sCF) of the resulting phylogenies, which give the percentage of decisive 

545 locus trees and alignment sites containing or supporting a specific branch in a given reference 

546 tree, respectively. Locus trees obtained with RAxML were used for gCF calculation. For sCF 

547 calculation, 1000 quartets were used to obtain stable estimations. To assess the resulting 

548 phylogenies with respect to a potential influence of biased data, we put the resulting 

549 topologies and BS support values in context with the gCF and sCF values and value 

550 differences. In general, both concordance factors are expected to be similar if the phylogenetic 

551 signal is only impacted by discordant signal, e.g. due to ILS (Minh et al., 2020a, b). If other 

552 processes affect the dataset, such as limited information or a data bias, the gCF values can be 

553 a lot lower than the sCF values, resulting in large factor value differences. A large proportion 

554 of conflicting signal or a significant variation of sites in the dataset can lead to a completely 

555 random resolution, which is indicated by sCF values ~33%. The reasons are either true 



556 phylogenetic signal caused by ILS or biased signal caused by uneven coverage. Distinct factor 

557 value differences of alternative topologies may indicate non-phylogenetic signal.

558

559 3. RESULTS

560 3.1 Final library and MiSeq output

561 The fragment distribution of the final library ranged from ca. 370-770nt. The majority 

562 of fragments outside the target range were successfully removed (Appendix 1, Fig. A1.4, A 

563 1.5). The MiSeq runs generated a total of 6,870,208 paired raw reads for the 29 samples 

564 (Table S4, “samples”). Sequence quality decreased with increasing read length (Table S4, 

565 “run I-III”). The quality of the R2 reads started to decline below a Phred quality score of 20 

566 from ca 260nt read length (Table S4, “mean quality scores”). The number of reads per sample 

567 ranged from 98,754 for A. laxum var. latipetalum Bañares & M.Marrero to 587,377 for M. 

568 icterica BG Bonn with an average of 236,903 reads per sample. Demultiplexed raw data is 

569 available at the NCBI Sequence Read Archive in BioProject PRJNA642981. 

570 3.2 ISC and BSC threshold selection 

571 In general, the plots of the selected metrics showed the expected trends and met the 

572 requirements (Fig. 3 and S1.B and S1.C). For the ISC metrics, however, the indicators were 

573 not as distinct as expected. The transition zones of the metrics were averaged to consensus 

574 CTs for the diploid and tetraploid samples, respectively (Supplementary Table S8). 

575 For the ISC of diploid samples (Fig 3a and S1.B, “ISC 2n”), the onset of the 

576 undermerging area was initiated by an abrupt increase in the number of clusters at CT 0.95, 

577 which was indicated by a compression of the third quartile (Q3) for the CTs 0.93 and 0.94 and 

578 a simultaneous increasing slope intensity in the scatter plots (Fig. 3a and S1.B, “clusters 

579 total”, transition zone: 0.93-0.94). Allelic variation was highest in the transition zone of 0.92-



580 0.95 and started to decrease strongly with increasing sample coverage (Fig. 3a and S1B, 

581 “heterozygosity”). The peak CT for heterozygosity was 0.92 (transition zone: 0.92-0.95) 

582 while the paralog peak was 0.88 (transition zone: 0.88-0.95). These maxima were preceded by 

583 irregular jumps of adjacent medians and an intensity change of the slopes (Fig. S1.B). This 

584 area was enclosed by the transition zone of the average read depth per cluster trend, which 

585 was indicated by an increasing Q3 compression and a steady slope shift (Fig. 3a, Fig. S1.B, 

586 “avg. depth total”, transition zone: 0.92-0.95). The CTs within the described transition zones 

587 were averaged to a consensus CT of 0.93 (Table S8, “ISC consensus CT”). 

588 For the ISC of tetraploid samples (Fig. 3b and S1.C, “ISC 4n”), undermerging was 

589 initiated by a Q3 compression within the transition zone of the number of clusters and 

590 increased in slope from CT 0.94 on (Fig. 3b and S1C, “clusters total”, transition zone: 0.92-

591 0.93), while allelic variation also started to decline steeply with increasing CTs (Fig. 3b and 

592 S1.C, “heterozygosity”, peak at 0.94, transition zone: 0.89-0.94). The transition zone of the 

593 average depth per cluster showed a steadily declining trend, a few slight median jumps and an 

594 increasing Q2 compression (Fig. 3b and S1.C, “avg. depth total”, transition zone: 0.89-0.92). 

595 The transition zone of filtered paralogs showed a prominent median jump and a moderate 

596 slope decline towards the undermerging area (Fig. 3b and S1.C, “filtered by maxH”, peak at 

597 0.90, transition zone: 0.90-0.92). The averaged consensus CT was 0.91 (Table S8, “ISC 

598 consensus CT”).

599 The scatter plots of the ISC metrics showed that some samples can have a larger effect 

600 on the overall trend of a metric than others. For instance, the sample “A_tort_RIII_A36_J49” 

601 (A. tortuosum subsp. tortuosum) showed one of the lowest average cluster depths (“avg. depth 

602 total”) while a high number of clusters (“clusters total”) was found (Fig. S1.B). It also showed 

603 the highest amount of filtered paralogs (“filtered by maxH”) and a two times higher 

604 heterozygosity than the other diploid samples, although flow cytometry confirmed its diploid 



605 status (Table S1). The tetraploids also showed some samples that were clearly different from 

606 the others (Figure S1.C).

607 For the BSC threshold selection (Fig. 3c), the undermerging area was indicated by the 

608 steady increase in retained loci while the sequence variation (VAR) started to decrease at CT 

609 0.92. At this point, the missingness of the assembly matrix was still low before it increased 

610 abruptly starting at CT 0.92. According to McCartney-Melstad et al. (2019) and Mastretta-

611 Yanes et al., (2015), a suitable CT is right before the decrease in sequence variation and the 

612 steep increase in missingness while the sample coverage (retained loci) still increases, at CT 

613 0.91. The hockey-stick signal was identified by the first positive swing of the “blade” 

614 following the NPL minimum (Fig. 3c, “new polymorphic loci”, Paris et al., 2017). This 

615 upward swing was in the transition of the CTs 91/90 that corresponds to a CT of 0.91 (Table 

616 S8, “NPL”) and thus supports the other requirements. We selected 0.91 as BSC threshold.

617 3.3 ipyrad assembly output

618 The average total read depth (avg_depth_total) for the diploid and tetraploid samples 

619 was 6.21 (± 2.17) at CT 0.93 and 5.55 (± 1.80) at CT 0.91, respectively (Supplementary Table 

620 S9, “ISC 2n”, “ISC 4n”). After applying the min_depth threshold of 10 for clustering, the 

621 majority read depth (avg_depth_mj) rose to 40.24 (± 7.52) for the diploid and 39.22 (± 17.10) 

622 for the tetraploid samples. On average, 26,280 (± 11,873) clusters per individual were found 

623 for the diploids and 34,436 (± 15,023) clusters per sample for the tetraploids. The average 

624 count of consensus reads was 2,635 (±692) for the diploid and 2,633 (±645) for the tetraploid 

625 samples.

626 The unfiltered assembly using a BSC threshold of 0.91 comprised 3,818 loci and 71,691 

627 variable sites (Table 1, Fig. 2, “raw” assembly). Of these variable sites, 36,413 were unique 

628 SNPs and 35,278 were PIS. 92 loci showed no variation and 581 loci contained no PIS. The 

629 dataset included 69.79% missingness, on average 10 unique SNPs and 9 PIS per locus. The 



630 retained loci had an average length of 376nt (± 93) with a maximum locus length of 618nt 

631 (including uncalled bases and gaps). The majority of retained loci ranged in length from 250 

632 to 550nt (Table S9, “locus coverage”). The assembly length range >500nt showed a 

633 prominent gap at ca. 540-580nt, after which a denser region with some samples of 

634 comparatively high coverage followed, at ca 590nt. Locus coverage per sample was fairly 

635 heterogeneous with an average of 1,242 (± 385) and ranged from a minimum of 640 loci for 

636 A. laxum A29_J41 to a maximum of 2,092 loci for A. roseum A01_J02 (Table S9, “sample 

637 coverage”). The two outgroup samples contained 127 (M. icterica M30_N36) and 155 loci 

638 (M. icterica BG Bonn) in the final assembly. The BLAST results showed that our dataset 

639 contained 21 loci (118 SNPs and 66 PIS) with identities of 78.5–100% with the reference 

640 plastomes. After removing non-parsimony-informative loci and cp loci, the dataset contained 

641 3,225 loci with an average of 67.69% missing data. Each locus contained on average 10 SNPs 

642 and 11 PIS and had an average length of 379nt (± 93) (Table 1, “cleansed”, Fig. 2c, “cp loci + 

643 0-PIS loci removal”). 

644 3.4 Initial inference of the raw dataset and clade definition

645 Phylogenetic inference of the ipyrad “raw” assembly resulted in incongruent 

646 topologies (Table 2, Fig. S2). CA-ML (Fig. S2.A) and CB-SM (Fig. S2.B) yielded 

647 unsupported backbones, while the SVD reconstruction was fully supported (Fig. S2.C). All 

648 trees showed five well supported main clades: clade 1 comprised A. laxum, A. pachycaulon 

649 subsp. parviflorum and A. palmense, clade 2 included two subspecies of A. pachycaulon,  

650 subsp. immaculatum and subsp. pachycaulon, clade 3 was formed by three species from 

651 Madeira (A. villosum, A. dumosum and A. divaricatum), clade 4 comprised both subspecies of 

652 A. tortuosum and clade 5 comprised all remaining taxa (A. roseum, A. punctatum, A. 

653 bituminosum, A. porphyrogenetos, A. brevipetalum, A. bollei and A. parlatorei) as well as two 

654 subspecies of A. pachycaulon, i.e., A. pachycaulon subsp. praetermissum and subsp. 



655 gonzalezhernandezii. Relationships among clades was not resolved due to a lack of reliable 

656 BS support among reconstructions. 

657 3.5 Locus filtering

658 The 3,225 loci of the “cleansed” dataset (Table 1, Fig. 2c) were first filtered respecting 

659 the locus coverage (minimum number of samples required), the locus variability (VAR/locus 

660 length/number of samples) and locus length intervals by 50nt steps. The properties of the 

661 resulting sub-datasets were recorded and phylogenies were inferred using CB-SM (see 3.5.1, 

662 Table S6, Supplementary Figure S3, all tree files available at Mendeley, doi: 

663 10.17632/yb6fd93dbw.1). For the second locus filtering, in addition to the length interval sub-

664 datasets, the loci were filtered requiring an increasing, cumulative maximum length (“max 

665 length”) and subjected to phylogenetic inference using CA-ML and CB-SM (see 3.5.2, Table 

666 S7, Supplementary Figure S4, all tree files available at Mendeley, doi: 

667 10.17632/yb6fd93dbw.1).

668 3.5.1 Locus filtering by coverage, variability, length intervals and dataset selection based on 

669 average missingness

670 We created six “min samples” sub-datasets by increments of four (Fig. 4a, Table S6, 

671 Fig. S3). The locus count and sequence variation (total) decreased as the number of samples 

672 increased (Fig. S3.A1 and S3.A4). The average number of SNPs per locus remained nearly 

673 constant across datasets, whereas the number of PIS per locus increased proportionately with 

674 VAR/locus until the “min_samples_16” dataset and then remained constant when increasing 

675 the parameter (Fig. S3.A4 and S3.B1). As expected, missingness declined with increasing 

676 number of samples (Fig. S3.B1 and S3.C1). The average locus length was constant across the 

677 datasets (Fig. S3.B1 and S3.C4). The branch support values of the CB-SM phylogenies 

678 showed a steady, slightly decreasing pattern across the datasets (Fig. S3.D1 and S3.D2). The 

679 backbone and within clade support values were around 80 and dropped by ca ten points with 



680 the “min_samples_24 dataset”. The average clade branch support was close to 100 in all 

681 datasets. 

682 Seven sub-datasets were filtered for the “min var” parameter (Fig. 4b, Table S6, Fig. 

683 S3). The number of loci and sequence variation (total) decreased with increasing minimum 

684 variability (Fig. S3.A2 and S3.A5). In terms of the sequence variation (VAR) total and per 

685 locus, the ratio of SNPs to PIS shifted towards a higher SNPs proportion with increasing 

686 required minimum variability (Fig. S3.A5 and S3.B2) and missingness increased as well (Fig. 

687 S3.B2 and S3.C2). The average locus length decreased slightly with increasing variability 

688 required, with the "min_var_300" sub-dataset showing a clear shift towards shorter loci (Fig. 

689 S3.B5 and S3.C5). The BS support values showed a decreasing trend (Fig. S3.D2). The tree 

690 topologies received varying support across the sub-datasets. The backbone branches were 

691 supported highest for the “min_var_075” and “min_var_100” datasets, while the clade and 

692 within clade branches had highest support values in the “min_var_001, 025, 050” datasets. 

693 The average branch support decreased with increasing missingness (Fig. S3.D5). 

694 The properties and resulting support values of the eight length interval datasets 

695 showed irregular trends (Fig. 4c, Table S6, Fig. S3). The amount of loci and sequence 

696 variation total (excluding the first sub-dataset containing only 72 loci) dropped from the 

697 highest value at “int_251-300” to the adjacent dataset, then rose and declined moderately until 

698 the next sharp decline from “int_451-500” to “int_501-550” (Fig. S3.A3 and S3.A6). The 

699 average sequence variation per locus was rising with increasing locus length. The proportions 

700 of SNPs and PIS in sequence variation (VAR) shifted towards a higher proportion of 

701 parsimony-uninformative sequence variation for the datasets “int_min-250” and “int_551-

702 max”, respectively (Fig. S3.B3). The missingness had a slightly convex trend with maxima 

703 for the flanking datasets (Fig. S3.B6 and S3.C3). The steadily increasing trend of the locus 

704 length showed unexpected averages for the two datasets containing the longest loci (Table S6, 



705 Fig. S3.B6 and S3.C6), matching the uneven locus length distribution of the “raw” assembly 

706 (Table S9, “locus length distribution” and “locus coverage”). The resulting branch support 

707 values showed contrasting patterns (Fig. S3.D3 and S3.D6). The overall trend was shaped 

708 concavely. The backbone support initially increased to a maximum at “int_401-450” and then 

709 decreased with increasing locus length.  The average clade support values were highest at 

710 “int_251-300”, “int_351-400” and “int_451-500”. The within clade branches were supported 

711 highest by the “int_351-400” sub-dataset, embedded in a descending trend towards the dataset 

712 edges. 

713 Regarding the “min_samples” and the “min_var” datasets, the results were as expected 

714 and consistent with findings of previous studies (e.g. Chen et al., 2015; Huang and Knowles, 

715 2016; Eaton et al., 2017; Molloy and Warnow, 2018,). For both parameters, the overall 

716 support decreased with increasing requirements, likely due to the simultaneous decline in 

717 number of loci and sequence variation. The irregular trends of the locus length interval 

718 datasets provided useful clues for subsequent dataset selection and further filtering (see 3.5.2). 

719 The trends observed here, together with the declining read quality (Table S4), the 

720 heterogeneous coverage of samples and loci, and the irregular assembly coverage respecting 

721 the over- and under-represented locus length ranges from ca. 250-280nt and ca. 540-580nt 

722 (Table S9), fit the definition of so-called "biased missingness" (Xi et al, 2015, 2016; Hosner 

723 et al., 2016; Sayyari et al, 2017; Molloy and Warnow, 2018). To reduce this impact, we 

724 selected the average proportion of missingness (69.58% for the length interval datasets) as 

725 threshold and discarded all datasets above this cut-off. The retained “int_251-500” dataset 

726 (Table 1, “int_251-500”) consisted of 2,788 loci, containing in total 56,448 (20.24 ±15.7 on 

727 average) VAR, 26,533 (9.51 ±8.66) SNPs, 29,915 (10.73 ±10.76) PIS, 66.66% missingness 

728 (9.67 samples/locus) and the average locus length was 360 (±70nt). The locus truncation to 

729 one third of the original length lead to a 2/3 reduction of sequence variation and locus length 

730 (Table 1, “int_251-500_short”).



731 3.5.2 Locus filtering by length intervals and increasing maximum length and dataset selection 

732 based on data qualities and phylogenetic patterns

733 The conspicuous trends of the length interval datasets in terms of SNPs/PIS ratio and 

734 missingness/locus coverage relative to the resulting BS support values of the species tree 

735 sections motivated further filtering to narrow down the extent of potential biased missingness 

736 (Table S7 and Fig. S4). 

737 For the locus length interval datasets, CA-ML showed the lowest and highest average 

738 BS support values for the “int_0-250” and “int_251-300” datasets, respectively (Fig. S4.C2 

739 and S4.D1). The average branch support decreased steadily with increasing locus length. The 

740 three branch sections were irregularly supported by different sub-datasets. The highest count 

741 of terraced branches was found for both CA-ML and CB-SM for the "int_0-250" dataset (Fig. 

742 S4.D2). The second highest counts were recorded for the sub-datasets “int_501-550” and 

743 “int_551-max”, respectively. CA-ML resolved the fewest terraced branches for the “int_301-

744 350” and “int_351-400” sub-datasets. The CB-SM trees showed the smallest counts for the 

745 “int_251-300” and “int_351-400” datasets, with the latter having the highest average BS 

746 support value (Fig. S4.D1 and S4.D3).

747 For the maximum length datasets, CA-ML showed the lowest sectional and total 

748 average BS support values for the first two sub-datasets (Fig. S4.C4 and S4.D2). Then, the BS 

749 support raised sharply for the “max_350” sub-dataset and increased steadily up to the 

750 maximum for the “max_500” sub-dataset. Beyond this point, there was no gain in branch 

751 support. The CB-SM branch support values were lowest for the “max_250” sub-dataset, 

752 increased slightly until the “max_350” sub-dataset, showed a strong gain for the “max_400” 

753 and a maximum value for the “max_450” sub-dataset (Fig. S4.C2 and S4.D2). Then, the 

754 average BS support decreased with increasing maximum locus length, in particular the 

755 backbone section lost support. CA-ML and CB-SM resolved the highest terraced branch 

756 count for the first sub-dataset (Fig. S4.D4). The number of terraced branches decreased to a 



757 minimum of two for the CA-ML trees with increasing maximum length required. CB-SM 

758 resolved the fewest terraced branches for the “max_400” sub-dataset. With the addition of 

759 loci up to 500nt length (“max_500”) the terraced branch count increased strongly and 

760 remained high up to the maximum locus length (“max_length”). 

761 For the final dataset selection, we classified all recorded locus properties of the sub-

762 datasets and the phylogenetic patterns of the resulting trees into three categories, respectively 

763 (Fig. S4.E). The two extreme datasets of both assembly edges were either over- or under-

764 represented (Table S9, “locus length distribution” and “locus coverage”). Those sub-datasets 

765 showed also a higher or almost equal ratio of SNPs to PIS relative to the average VAR per 

766 locus (Fig. 4, “int_datasets”, Table S7, Fig. S4.A1-A6). The average missingness was highest 

767 for the filtering parameter edges and decreased towards the inner medium parameters (Fig. 

768 S4.B1-B4). The expected average locus lengths were met by the inner filtering parameters, 

769 while the values of the sub-datasets increasingly diverged towards the assembly edges (Fig. 4, 

770 “int_datasets”, Table S7, Fig. S4.B5 and S4.B6). Both CA-ML and CB-SM showed the 

771 highest sectional and total BS support values for the inner filtered sub-datasets, with the 

772 highest gain for the “max_350” and “max_450” sub-datasets (Fig. S4.C1-C4 and S4.D1-D2). 

773 The BS support values of the backbone section profited most within this locus length range. 

774 Both approaches resolved the highest number of terraced branches for the filtering parameter 

775 edges (Fig. S4.D3-4). The terraced branch count decreased with increasing maximum locus 

776 length and increased again strongly beyond a locus length of 450nt for the CB-SM trees. With 

777 this locus length also the BS support values started decreasing steadily (Fig. S4.D2 and 

778 S4.D4). In summary, the locus properties and phylogenetic patterns associated with non-

779 randomly distributed missingness or biased data were strongest at the filtering parameter 

780 edges, while the length ranges from 300 to 450nt appeared to be less affected (Fig. S4.E). The 

781 selected "int_301-450" dataset (Table 1) consisted of 1,599 loci of an average length of 373nt 

782 (±43nt), containing 15,673 SNPs (avg. 9.82), 17,808 PIS (avg. 11.24) and 65.56% 



783 missingness. Truncation resulted in a 2/3 reduction of locus properties (Table 1, “int_301-

784 450_short”). 

785 3.6 Phylogenetic inference

786 We used three datasets for comparative phylogenetic inference (Table 1, Fig. 2c and 

787 2d). The 3,818 loci of the "raw" assembly were used for initial inference and clade definition 

788 (see 3.4). We removed both cp and non-informative loci from this dataset. The retained 3,225 

789 loci of the “cleansed” dataset were the input for the locus filtering approach (see 2.5 and 3.5). 

790 The first locus filtering by coverage, variability and length intervals resulted in the “int_251-

791 500” dataset (see 2.5.1 and 3.5.1). The second locus filtering was intended to reduce the 

792 presumed biased phylogenetic signal by using phylogenetic patterns relative to the underlying 

793 sub-dataset qualities to detect impacted assembly areas (see 2.5.2 and 3.5.2). This approach 

794 yielded the “int_301-450” dataset. The filtering steps reduced the number of loci by 58% and 

795 the amount of PIS by 50% (Tab. 1, “raw” compared to “int_301-450”). Sequence variation 

796 and locus coverage increased slightly while the average missingness decreased by 4%. Loci-

797 per-sample coverage decreased from an average of 1,166 to 549 loci while sample-per-locus 

798 coverage became more homogenous (Table S9, “sample coverage”). Hence, we assumed the 

799 "raw" assembly to contain the most, the "int_251-500" dataset to contain less, and the 

800 "int_301-450" dataset to contain the least biased phylogenetic signal. Filtering parsimony 

801 informative characters (unlinked PICs) resulted in three datasets for the SVD analyses (Tab. 

802 1). The loci of the “raw” assembly were truncated to one third of their original length, re-

803 arranged respecting the locus filtering results and species relationships were inferred with 

804 CA-ML and CB-SM to compare potential performance differences in terms of locus length 

805 (Table 1, “short”, Fig. 2c and 2d). 

806



807 3.6.1 Comparative phylogenetic inference of the un-/filtered datasets

808 For the “raw” datasets, CA-ML (Fig. S2.A) and CB-SM (Fig. S2.B) resolved 

809 incongruent and weakly supported backbone topologies. The CA-ML tree showed an 

810 unresolved relationship between the clades 2, 3 and 4. CB-SM inference resulted in an 

811 unresolved relationship of clade 1 to clades 2, 3 and 4, with low support and low concordance 

812 factor values. The SVD tree (Fig. S2.C) showed full support for a third topology. However, 

813 the concordance factor values for the relationship of clade 1 to clade 5 were low. The within 

814 clade topology differed among all reconstructions.

815 For the “int_251-500” dataset, CA-ML (Supplementary Figure S5.A) and CB-SM 

816 inferences (Fig. S5.B) resolved congruent backbone topologies, however, for CB-SM the 

817 relationships of clades 2+3+4 to clade 5 lacked support. The concordance factor values 

818 increased compared to the “raw” dataset. The SVD tree (Fig. S5.C) showed a maximally 

819 supported conflicting topology with low concordance factor values for the relationship of 

820 clade 2 to clades 1+3+4. The within clade topology differed among all reconstructions.

821 For the “int_301-450” dataset, CA-ML (Supplementary Figure S6.A) and CB-SM 

822 (Fig. S6.B) inference resulted in a well-supported, congruent backbone topology (Fig. 5). 

823 Concordance factor values for the backbone and clade branches were similar. Again, the SVD 

824 tree (Fig. S6.C) showed a maximally supported conflicting topology but low concordance 

825 factor values for the relationship of clade 2 to clades 1+3+4. 

826 3.6.2 gCF and sCF values obtained with IQ-Tree 

827 Dataset reduction with respect to the exclusion of potentially biased assembly areas, 

828 clearly showed an improvement regarding the concordance factor values and differences for 

829 the CB-SM reconstructions (Tab. 2). The factor difference decreased for all within clade 

830 branches and clade branches. The factor values of the clades 1, 2, 3, and 5 decreased stronger 

831 compared to clade 4. The gCF value of the clade branches increased by more than 8% 

832 compared to the unreduced dataset, while the sCF value decreased slightly. Interestingly, the 



833 factor values of the backbone branches increased slightly while the difference increased 

834 slightly as well. 

835 Concordance factors of CA-ML inference showed a similar pattern compared to CB-

836 SM. Overall, the factor values increased with increasing dataset reduction. However, the 

837 effect was less pronounced compared to CB-SM and clade 5 even showed an increased factor 

838 difference. Notably, the effect of the factor differences for the clade branches was smaller 

839 while for the backbone branches it was larger, compared to the CB-SM reconstruction. 

840 In general, the factor effects of the SVD reconstructions were in strong contrast to CB-

841 SM and CA-ML. The SVD factor values were lower compared to CB-SM and CA-ML, and 

842 the factor differences raised for the clade and the backbone branches. For the within ancestral 

843 branches of clade 2+3 and all descendant relationships, the factor difference decreased 

844 strongly.

845 In terms of the resulting BS support values, data reduction had the strongest effect on 

846 the backbone branches with an increase in support by ~13% for CA-ML and ~16% for CB-

847 SM (Tab. 2). Still, the gCF and sCF values suggest alternative topologies for the relationship 

848 of clades 2+3+4 to clade 5. 

849 3.6.3 Phylogenetic inference of the truncated locus datasets

850 Inference of the truncated datasets using CA-ML (Supplementary Figure S7.A and 

851 S7.B) and CB-SM (Fig. S7.C and S7.D) resulted in alternative topologies compared to the 

852 full-length datasets, while also exhibiting distinctly lower concordance factor values and 

853 larger factor differences (Supplementary Table S10) or insufficient BS support for the 

854 backbone section. The BS support values decreased with decreasing locus length and the 

855 decrease was strongest in the backbone branches. The concordance factor values were mostly 



856 lower compared to the full-length datasets and the factor difference for the clade and 

857 backbone branches increased clearly for all reconstructions.



858 4. DISCUSSION

859 Modification of several modules of the RADseq toolbox, inspired by GBS (Elshire et al., 

860 2011) and ddRADseq (Peterson et al., 2012), has enabled a strong reduction of the number of 

861 targeted fragments. In addition, employing the maximum capacity for sequencing resulted in 

862 an extended locus length of up to 618nt. The CT selection approach enabled an informed 

863 selection of ISC/BSC thresholds for homology assessment of assembled loci. The locus 

864 filtering approach, based on properties known to affect phylogenetic inference, provided the 

865 opportunity to observe dataset-specific trends and identify potential adverse properties of the 

866 sub-datasets. Additional filtering using phylogenetic patterns for bias detection turned out to 

867 improve overall resolution, in particular for CB-SM inference. Besides these positive 

868 outcomes, there were also many challenges whose critical consideration led to suggestions for 

869 further improvements.

870 4.1 Lab workflow

871 Compared to other studies employing a RADseq approaches for sample preparation 

872 (e.g. Escudero et al., 2014; de Oca et al., 2017; Dillenberger and Kadereit, 2017; Hamon et 

873 al., 2017; Wagner et al., 2018; Gerschwitz-Eidt and Kadereit, 2019; Paetzold et al., 2019; 

874 Rancilhac et al., 2019; Hipp et al., 2020; Karbstein et al., 2020) we increased the fragment 

875 length range and thus the length of assembled loci clearly by shifting the size selection 

876 window and fully exploiting the sequencing range of 300nt PE. However, the raw reads 

877 varied strongly both in quantity and quality across the samples, which led to a loss of locus 

878 and sample coverage, in particular within the higher length range targeted (Supplementary 

879 Table S9). This biased distribution of phylogenetic information represented a substantial 

880 challenge to data evaluation. 

881 Our lab workflow aims at long RAD loci and has been modified in three aspects: First, 

882 we included a specific size selection window ranging from 300–600nt for the resulting 



883 fragments of the utilized REases BamHI and KpnI. Second, barcode and common adapters 

884 were designed for both REase motifs to sequence all generated fragment types in contrast to 

885 the classic ddRADseq approach (compare Peterson et al. 2012). Third, the lab protocol 

886 contained two size selection steps to ensure complete removal of fragments outside the target 

887 range. 

888 4.1.1 Employed REases

889 The flexible RADseq toolbox allows the use of various REases of a wide range of 

890 qualities for complexity reduction (see also: Andrews et al., 2016; McKain et al., 2018; 

891 Parchman et al., 2018). Testing and comparing single and dual enzyme strategies with respect 

892 to the desired degree of reduction, or in particular a reduced fragment number and an 

893 extended length range, either in silico or by sequencing a trial library when there is no 

894 reference available, can certainly reduce mutation-based locus dropout and ease library prep 

895 and adapter design (see also: Lepais and Weir, 2014; Mora-Marquez et al., 2017; 

896 Rivera‐Colón et al., 2021). Double-digest approaches, using two REases for digestion (e.g. 

897 Peterson et al., 2012), are more prone to restriction site mutation disruption than single-digest 

898 protocols (e.g. Elshire et al., 2011). Hence, they tend to yield fewer fragments than single-

899 digest approaches which are therefore more easily sequenced to sufficient depth (Andrews et 

900 al., 2016; Harvey et al., 2016; Eaton et al., 2017; McKain et al., 2018). Using the K. 

901 fedtschenkoi genome for in silico double-digest using BamHI and KpnI, we calculated about 

902 4,400 fragments (see 2.2) and received about 3,800 assembled loci (Table 1, “raw”). The 

903 difference of ca. 600 fragments may be due to the loss of loci in the assembly range above 

904 500nt (Table S9). Compared to capturing approaches, which typically produce loci of up to 

905 thousands of base pairs in length (e.g., McCormack et al., 2013a; Nicholls et al., 2015) the 

906 herein obtained locus length of Ø 376nt and 618nt at most may seem short. Still, the resulting 

907 loci showed sufficient sequence variation per locus as input for species tree estimation using 



908 CB-SM and were in line with approaches targeting similar length ranges (e.g. Hosner et al., 

909 2016; Blom et al., 2017). 

910 4.1.2 Adapter design

911 The design of adapters herein was based on the original GBS protocol to include and 

912 sequence all generated fragments (see Elshire et al., 2011). However, this approach proved 

913 not satisfactory. It did not account for potential chimera formation and index hopping (see 

914 also: Van der Valk et al., 2020) and the identical flow cell binding motifs meant a potential 

915 reduction in sequencing yield. While in general the sequencing output was not influenced, the 

916 second sequencing run, containing the majority of samples, yielded only 50% of the 

917 maximum sequencing output of the MiSeq v3 kit (Table S4, “run III”). In addition, the reads 

918 flanked by identical cut sites introduced a further step in data processing and locus assembly 

919 that could be avoided as the raw data had to be demultiplexed twice. Considering these 

920 hurdles, we recommend to design each adapter type for one cutsite motif only and to use an 

921 indexing approach that accounts for technical bias (e.g. MacConail et al., 2018; Bayona-

922 Vásquez et al., 2019). 

923 4.1.3 Size selection window and fragment/locus length distribution

924 The use of coalescent-based summary methods for phylogenetic inference requires a 

925 relatively high quality content of sequence variation per locus to reduce GTEE (Chou et al., 

926 2015; Liu et al., 2015; Mirarab et al., 2016; Xu and Yang, 2016; Molloy and Warnow, 2018). 

927 Because the average amount of phylogenetic information in a neutrally evolving locus 

928 generally correlates with its length (Blom et al., 2016; Mirarab et al., 2016; Chou et al., 2016; 

929 Molloy and Warnow, 2018), we chose a size selection window of approximately 300-600nt 

930 (ca. 380-720nt segregation range including the adapter and primer length) to obtain longer 

931 fragments and thus more informative loci (Fig. 1, Appendix 1). The 2nd size selection using a 

932 ratio of 0.8 parts magnetic bead suspension to one part library suspension is particularly 



933 important as it removes fragment artifacts from automated fragment segregation and PCR 

934 (Fig. 1f, Appendix 1). Compared to a library prepared with the same protocol but without 

935 final purification, the precision of the fragment length segregation was clearly improved 

936 (Appendix 1). The length distribution of the final assembly was overall in the range targeted 

937 by the lab protocol. However, the strong decline in sequencing quality of R2 reads (Table S4, 

938 “run I-III”, “mean quality scores”) has resulted in a large degree of missingness in the length 

939 range of 500-600nt of assembled loci (Table S9, “locus length distribution”). Moreover, the 

940 quality filtering thresholds were set quite strictly (Table S5; Eaton and Overcast, 2020). This 

941 prevents assembly of erroneous sequences by discarding reads below a specified threshold for 

942 base and overall quality. In our dataset this applied especially to the R2 reads, starting at ca 

943 260nt. Thus, a lot of information was lost by excluding high quality partners of low quality 

944 mates. Tan et al. (2019) found that declining base quality and higher error rates of fragments 

945 above 500nt are a general issue with multiple Illumina sequencing platforms and kits.

946 The descriptive analysis of the filtered sub-datasets showed that phylogenetic 

947 information across the length intervals provided varying support for different sections of the 

948 resulting species trees (see 2.5.2 and 3.5.2, Fig. 4c, Fig. S4, “length interval datasets”). 

949 Maximum support for all sections was covered by a locus length range of 300-450nt. 

950 Considering this and the decreasing quality of R2 reads, we recommend a size selection 

951 window of 300-500nt (ca. 380-620nt segregation range including the adapter and primer 

952 length). This might avoid locus loss due to the decreasing sequencing quality of the R2 reads 

953 and thereby achieve a more uniform assembly and evenly distributed phylogenetic 

954 information. However, other focal groups than Aichryson might require longer loci, as the 

955 retained variation per locus depends on the taxonomic level of interest and is very group 

956 specific.

957



958 4.2 Data analysis

959 Assembly and analysis of RADseq data is often challenged by various factors 

960 depending on the selected library prep and bioinformatics approach, and, of course, the study 

961 group itself. The Aichryson data shown here united just about every conceivable challenge 

962 known to RADseq data. The samples had varying DNA qualities and were sequenced in three 

963 different libraries. The output of the three sequencing runs differed in terms of quantity and 

964 quality. The R2 reads showed an unevenly distributed drop in quality starting at about 260nt 

965 sequencing length (Table S4). And it turned out that this dataset had not only a high 

966 proportion of missing data, but also of biased missingness across the assembly length range, 

967 impacting sample and locus coverage (Table S9). Despite these unfavorable circumstances, or 

968 maybe because of them, the detailed analyses (Fig. 2), including a CT selection and a locus 

969 filtering approach, provided detailed insights into the data properties and their impact on 

970 phylogenetic inference.

971 4.2.1 CT selection approach

972  Clustering threshold selection approaches aim at determining balanced CTs to 

973 establish homology while avoiding clustering of paralogous RADseq loci (e.g., Ilut et al., 

974 2014; Mastretta-Yanes et al., 2015; McKinney et al., 2017; Paris et al., 2017; McCartney-

975 Melstad et al., 2019). For this purpose, assembly metrics are compared across a range of CTs 

976 to identify values that meet specified requirements. Application of such methods is becoming 

977 increasingly popular (e.g. Herrera and Shank, 2016; Razkin et al., 2016; Paetzold et al., 2019; 

978 Rancilhac et al., 2019; Karbstein et al., 2020; Wagner et al., 2020) to ensure the assembly of 

979 homologous loci (Shafer et al., 2017; Springer and Gatesy, 2018; McCartney-Melstad et al., 

980 2019; Fernández et al., 2020; Simion et al., 2020). Following these previously proposed 

981 criteris, we were able to identify areas that met the requirements in terms of 1) the onset of the 

982 undermerging area, in which true orthologs are separated into paralogs (McCartney-Melstad 



983 et al., 2019), 2) an area of high heterozygosity with decreased clustering of paralogs (Ilut et 

984 al., 2014), 3) a maximized sequence variation count while missingness is minimized 

985 (Mastretta‐Yanes et al., 2015), and 4) an increasing number of new polymorphic loci (NPL) 

986 indicated by the hockey stick signal (Paris et al., 2017). This procedure resulted in an 

987 assembly comprising 3,818 loci, of which ~84% contained parsimony informative sites (Table 

988 1). The loci showed on average ~19-21 variable sites, of which ~9-11 were parsimony 

989 informative. Since these loci were found to be useful for CB-SM inference, we consider the 

990 here selected metrics and CT selection approaches in general as promising tools for an 

991 informed selection of thresholds during de novo assembly. Still, there are some issues that 

992 need to be considered: 1) The results shown herein and assumptions arising from them 

993 provide more empirical evidence on previous studies, however, are highly specific to our 

994 study group and do not constitute proof in general. Hence, simulation studies with known 

995 characteristics and focusing on each of these aspects are urgently required. 2) We selected 

996 only a few out of many more possible metrics that can be utilized to evaluate dataset-specific 

997 trends, such as the pairwise data missingness and genetic dissimilarity (McCartney-Melstad et 

998 al., 2019), the proportion of heterozygous loci in a sample and allelic ratios at each locus 

999 (McKinney et al., 2017) or the fraction of sequence variation shared by specific proportions of 

1000 all individuals (Paris et al., 2017). 3) The selected CTs for ISC and BSC are an adequate 

1001 representation of a majority of loci but one CT cannot appropriately characterize the entire 

1002 sequence divergence within and across samples. Various causes of sequence divergence 

1003 among genomic regions (e.g., coding or non-coding regions, thus degree of sequence 

1004 conservation, and biological processes such as hybridization, horizontal gene-transfer and 

1005 ILS) lead to a normalization within a range of suitable CTs, which we here referred to as the 

1006 “transition zone”. 4) Polyploid loci composed of greater allele numbers can show greater 

1007 heterozygosity than loci composed of lower number of alleles presumably containing less 

1008 sequence variation across orthologous alleles (Hirsch and Buell, 2013; Karbstein et al., 2021), 



1009 and thus require different CTs for accurate clustering. Hence, merging of ISC samples of 

1010 varying ploidy for BSC across all taxa leads to a clustering bias. 5) The resulting data, 

1011 whether used for metric evaluation or inferences of population structure or species 

1012 relationships, are heavily impacted by all other parameters chosen, depend on numerous 

1013 properties of the study system (e.g.: taxonomic level, genomic variation, utilized lab 

1014 protocols, quality and quantity of data) and will affect downstream analysis (e.g. Huang and 

1015 Knowles 2016; Eaton et al., 2017; Shafer et al., 2017; Crotti et al., 2019; McCartney-Melstad 

1016 et al., 2019). 6) Metric trends can be affected by heterogeneous read quality and quantity, as 

1017 well as biological factors, such as genome size or repetitive regions. This presumably leads to 

1018 different metric trends of individual samples, as seen in the scatter plots for the ISC threshold 

1019 selection (paragraph 3.2, Supplementary Figure S1). As a consequence, the selection of 

1020 potential CTs gets less precise. This problem may be improved by re-splitting samples into 

1021 groups that show similar trend intensities and using specific CTs for each group. Simulation 

1022 studies focusing on potential impacts of heterogeneous sample qualities on the CT selection 

1023 and the resulting assembly are required. Nevertheless, we consider a thorough evaluation of 

1024 assembly metrics, as shown in this and other studies (e.g. Paris et al., 2017; Paetzold et al., 

1025 2019; Rancilhac et al., 2019; McCartney-Melstad et al., 2019; Karbstein et al., 2020; Wagner 

1026 et al., 2020), to be an improvement over simply using default settings. 

1027 4.2.2 Locus filtering

1028 The impact of filtering loci regarding specific properties, such as length, sequence 

1029 variation or missingness, prior to phylogenetic inference has been investigated by numerous 

1030 studies (e.g. Chou et al., 2015; Liu et al., 2015; Xi et al., 2015, 2016; Hosner et al., 2016; 

1031 Mirarab et al., 2016; Huang and Knowles 2016; Sayyari et al., 2017; Molloy and Warnow, 

1032 2018). We confirm general trends previously observed regarding locus coverage and sequence 

1033 variation (see 2.5.1 and 3.5.1, Table S6, Fig. S3). As the minimum requirements increased, 



1034 the number of loci and sequence variation decreased (Huang and Knowles, 2016; Eaton et al., 

1035 2017). This information loss resulted in sharply decreasing BS support values of the resulting 

1036 species tree estimates. This is likely a result of higher locus dropout in more rapidly evolving 

1037 loci (for the “min var” datasets). The more conserved loci are less variable but also less prone 

1038 to mutation-induced cut-site disruption and thus show a higher sample coverage (for the “min 

1039 samples” datasets). An interesting point is that the two datasets with the highest minimum 

1040 variability required (Table S6, “min_var_200” and “min_var_300”) also showed a trend 

1041 toward biased locus lengths. In addition, these loci contained on average more missing data 

1042 and a higher portion of variable sites was parsimony un-informative. The negative impact of 

1043 this constellation of locus properties on the accuracy of species tree estimation has been 

1044 demonstrated by Xi et al. (2015), Hosner et al. (2016) and Lee et al. (2018). This constellation 

1045 was also evident for the length interval datasets containing the shortest and longest loci at the 

1046 assembly edges (Table S6 and S7, Fig. S3 and S4). For these assembly regions, we assume 

1047 that the declining sequencing quality of R2 reads led to biased sample and locus coverage, 

1048 which was reflected by the prominent gap between 500-600nt as well as the high number of 

1049 loci in the 250-300nt length range of the assembly (Table S9). This kind of data bias causes 

1050 high GTEE and artificial phylogenetic conflicts among taxa and clades, which negatively 

1051 affects the species tree estimation performance (Sanderson et al., 2010, 2011, 2015; Simmons 

1052 et al., 2012; Hosner et al., 2016; Xi et al., 2016; Sayyari et al., 2017; Dobrin et al., 2018).

1053 To reduce this effect, we first chose a controversial approach and filtered the loci 

1054 based on average missingness, which resulted in the “int_251-500” dataset. Locus filtering 

1055 based on missingness is generally not recommended because it can lead to a significant loss 

1056 of information and thus to a performance decline of phylogenetic inference (Huang and 

1057 Knowles 2016; Eaton et al., 2017; Molloy and Warnow, 2018; Crotti et al., 2019). However, 

1058 it can lead to an improvement in estimation accuracy if the extent of biased, non-randomly 

1059 distributed phylogenetic signal is also reduced (Xi et al., 2015, 2016; Sayyari et al., 2017; 



1060 Molloy and Warnow, 2018). Although this first filtering and dataset selection resulted in a 

1061 slight improvement of the data quality and the resulting BS support and concordance factor 

1062 values, it did not yield the required data quality for a successful CB-SM inference. Simply 

1063 choosing the average missingness as a cutoff value may improve the quality of loci containing 

1064 evenly distributed phylogenetic information, but not if the bias is unevenly distributed across 

1065 the assembly.

1066 To further reduce the extent of the biased assembly area, we binned the loci based on 

1067 length, inferred CA-ML and CB-SM phylogenies for each sub-dataset and put resulting 

1068 phylogenetic patterns in relation to sub-dataset properties to detect biased locus length ranges 

1069 (see 2.5.2 and 3.5.2, Table S7, Fig. S4). This approach turned out beneficial with regard to the 

1070 selection of less biased assembly areas, suitable for CB-SM inference. The typical responses 

1071 of BS support values and reconstruction of terraced branches confirmed the assembly’s edge 

1072 regions as particularly biased. In these locus length regions of the assembly, either the BS 

1073 support values collapsed or the number of terraced branches of the resulting topology was 

1074 high. Consequently, we selected the remaining, presumably less biased, assembly range of 

1075 301-450nt length served as third dataset for comparative phylogenetic inference. While this 

1076 second filtering and dataset selection procedure represented a drastic reduction of overall data 

1077 quantity, it also increased data quality as indicated by the average sequence variation per 

1078 locus, locus coverage/missingness and sample coverage (Table 1, Table S9). 

1079 The second filtering approach used here to examine the influence of locus properties 

1080 on the resulting phylogenetic reconstructions resulted in a dataset favorable for CB-SM 

1081 inference. However, the process was quite tedious, and at times somewhat crude, which 

1082 indicates a number of opportunities for further refinement in the future. 1) Loci of certain 

1083 properties within the excluded assembly ranges are likely to be also well suited for CB-SM 

1084 inference. We filtered the loci by their relative sequence variation including SNPs and PIS 



1085 (see 2.5.1). However, the notable PIS/SNPs ratio along with the average locus coverage 

1086 evident in the locus length filtering (Fig. S3 and S4) may be a clue to filter loci by 

1087 information quality (Xi et al., 2015; Hosner et al., 2016; Lee et al., 2018). 2) The bin sizes 

1088 chosen for filtering locus properties might be smaller to enable a more accurate detection of 

1089 potential trend changes respecting phylogenetic outcomes. 3) We calculated only one 

1090 reconstruction per inference approach for each sub-dataset. Multiple replicates may be 

1091 generated to identify and statistically assess potential variations. 4) We found overall 

1092 matching trends of locus properties relative to the resulting phylogenetic patterns of CA-ML 

1093 and CB-SM used for bias detection. Considering the presumably strongly biased signal 

1094 scattered across taxa, the relative influence of technical errors and true biological conditions 

1095 (e.g. ILS) remain difficult to assess. 5) Instead of multi-locus bootstrapping (Seo, 2008), the 

1096 branch support might be assessed using Local Posterior Probability, which was shown to 

1097 perform more accurate on locus trees with relatively high error (Sayyari and Mirarab, 2016) 

1098 or quartet based methods to identify non-informativeness (Pease et al., 2018). 6) Counting the 

1099 terrace-like branches in the resulting trees helped to identify biased assembly areas but did not 

1100 provide insight into the actual underlying conflicts among taxa and clades. Besides, terraced 

1101 branches can also represent the true topology (Sanderson et al., 2011). To account for 

1102 artificial conflicts in the data, terrace-aware phylogenetic inference tools can be used 

1103 (Sanderson et al., 2011, 2015; Chernomor et al., 2016; Dobrin et al., 2018). 7) Further 

1104 approaches may be tested comparatively to allow for a more accurate data quality assessment, 

1105 such as filtering for fragmentary data to achieve uniform taxon coverage (Xi et al., 2016; 

1106 Sayyari et al., 2017) or subsampling specific loci to establish congruence across the dataset 

1107 (Chen et al., 2015; Simmons et al., 2016). For future projects, an automated pipeline that 

1108 filters loci based on multiple criteria, records the properties of these bins, and evaluates the 

1109 resulting phylogenetic patterns, thus simplifying the tedious filtering process, would be of 

1110 great value.



1111 4.3 Phylogenetic inference

1112 Previous attempts at resolving phylogenetic relationships in Aichryson were mainly 

1113 hampered by lack of variability in the employed regions (Mort et al., 2002; Fairfield et al., 2004 

1114 which failed to resolve relationships at shallow taxonomic levels (e.g., Miller et al., 2003; 

1115 Abeysinghe et al., 2009; Duan et al., 2015). The application of a modified RADseq approach 

1116 together with detailed data processing, analysis of filtered sub-datasets and comparative 

1117 phylogenetic inference resulted in the first well-supported phylogeny for Aichryson. Moreover, 

1118 we gained further insight into the performance of the tested inference methods with respect to 

1119 underlying data properties. 

1120

1121 4.3.1 General trends of the CA-ML and CB-SM inference during locus filtering

1122 During locus filtering, we initially filtered the loci by variability, locus coverage and 

1123 length intervals (see 2.5.1 and 3.5.1). Contrary to our expectation, we were not able to 

1124 reconstruct a well-supported CB-SM phylogeny using this approach. Instead, we found that the 

1125 BS support values of the three species tree sections responded differently to the underlying 

1126 locus length interval datasets (Fig. 4, Table S6, Fig. S3). The related locus properties in terms 

1127 of sequence variation and missingness, as well as the distribution of data across the assembly, 

1128 loci, and samples (Table S9), indicated a data bias (Sanderson et al., 2010; Hosner et al., 2016; 

1129 Xi et al., 2016; Sayyari et al., 2017; Lee et al., 2018; Molloy and Warnow, 2018). 

1130 Subsequently, we used phylogenetic patterns yielded by CA-ML and CB-SM inference 

1131 of locus length sub-datasets to detect potentially biased assembly areas (see 2.5.2 and 3.5.2, 

1132 Table S7, Fig. S4). CB-SM resolved more terraced branches than CA-ML across the tested sub-

1133 datasets, in particular when the datasets were small (Xi et al., 2016; Fig. S4, “length interval” 

1134 datasets). This is likely due to the information loss inherent to the method, using only summary 

1135 statistics of the inferred gene trees as input for species tree estimation (Xu and Yang, 2016). 

1136 Along with this come the clearly lower resulting support values of the multi-locus bootstrapping 



1137 (Seo, 2008) when applied to fragmentary data (Xi et al., 2015, 2016; Hosner et al., 2016; 

1138 Sayyari et al., 2017). The overall higher and steadily increasing BS support values with 

1139 increasing dataset size confirm prior observations regarding CA-ML inference (Kubatko and 

1140 Degnan, 2007; Liu et al., 2015; Minh et al., 2020a). CA-ML inference of the length sub-datasets 

1141 seemed less sensitive or more robust to data bias (Xi et al., 2016; Molloy and Warnow, 2018). 

1142 Still, bootstrapping over the concatenated matrix showed quite similar trends compared to the 

1143 multi-locus bootstrapping employed with CB-SM. 

1144

1145 4.3.2 Comparative phylogenetic inference of the un-/filtered datasets

1146 The filtering steps meant a maximum reduction of 58% for the number of loci and 50% 

1147 for the number of PIS, while the average sequence variation and coverage per locus raised, 

1148 average missingness declined and sample coverage became more evenly distributed (Tab. 1, 

1149 “raw” compared to “int_301-450”, Table S9, “sample coverage”). 

1150 For CA-ML and CB-SM, the exclusion of presumably biased assembly areas, resulted 

1151 in increasing statistical support while the concordance factor value differences decreased (Tab. 

1152 2, Table S10, Fig. S2, S5 and S6). These trends were stronger for the CB-SM inferences. The 

1153 concordance factor values and differences of the within clade branches benefited slightly while 

1154 those of the clade branches benefited most from reduction. This was accompanied by improved 

1155 factor values and differences of the backbone branches. We suggest that the overall higher locus 

1156 coverage and the more evenly distributed information across taxa (sample coverage) of the 

1157 retained assembly area caused less artificial conflicts among clades and thus favored resolution 

1158 and support of the backbone section (Sanderson et al., 2010, 2011; Xi et al., 2015, 2016; Hosner 

1159 et al., 2016; Sayyari et al., 2017; Dobrin et al., 2018; Molloy and Warnow, 2018; Minh et al., 

1160 2020a, b). This increasing statistical support coincides with an increase in the number of 

1161 terraced branches. For instance, the CA-ML and CB-SM inferences of the “raw” dataset 

1162 reconstructed a dichotomous topology for the taxa of clade 4, but there was insufficient 



1163 statistical support for the backbone sections (Fig. S2). The backbone topology of the strongly 

1164 reduced "int_301-450" dataset was well supported, but in exchange the taxa of clade 4 were 

1165 reconstructed on terraced branches (Fig. 5 and S6). 

1166 Phylogenetic inference of the datasets using SVD showed some contradictions. The 

1167 lower factor values of the backbone branches for the alternative topologies and compared to the 

1168 CA-ML and CB-SM inferences (Fig. S2, S5 and S6), increasing concordance factor value 

1169 differences with increasing extent of reduction (Table 2), as well as the consistent maximum 

1170 BS support values, suggest a random resolution due to limited and unevenly distributed 

1171 information (Long and Kubatko, 2018; Minh et al., 2020a, b). This is certainly in part due to 

1172 the selection of individual PICs per locus, which we performed to meet the methods 

1173 requirements in terms of linkage (Bryant et al., 2012; Chiffman and Kubatko 2014; Xu and 

1174 Yang, 2016). In addition, studies comparing the performance of inference methods under 

1175 challenging data conditions showed that SVD is often less accurate than CA-ML and CB-SM 

1176 (Chou et al., 2016; Molloy and Warnow, 2018). Still, the SVD inferences illustrated potentially 

1177 conflicting topological alternatives.

1178 In summary, phylogenetic inference of the three datasets (“raw”, “int_251-500”, and 

1179 “int_301-450”) showed positive trends in terms of the resulting BS support values and 

1180 concordance factor values with increasing degree of dataset reduction for CA-ML and CB-SM. 

1181 The resulting SVD reconstructions, however, appeared to be impeded by information limitation 

1182 and data bias. 

1183 4.3.3 Phylogenetic inference of the truncated locus datasets

1184 In general, increasing locus length is associated with increasing phylogenetic 

1185 information, lower GTEE and thus an increased accuracy of species tree estimation (e.g. 

1186 Mirarab et al., 2014, 2016; Xi et al., 2015; Chou et al., 2016; Hosner et al., 2016; Xu and Yang, 

1187 2016; Blom et al., 2017; Molloy and Warnow, 2018). We expected a decrease in locus length 

1188 to decrease the total and average phylogenetic information per locus, and consequently to 



1189 negatively affect performance. To test this, the “raw” assembly loci were truncated and used as 

1190 input for CA-ML (Supplementary Figure S7 A and B) and CB-SM inference (Supplementary 

1191 Figure S7 C and D). 

1192 The truncated datasets showed a 2/3 reduction in phylogenetic information (Table 1, 

1193 “int_251-500_short” and “int_301-450_short”), resulted incongruently resolved tree topologies 

1194 (Fig. S7), and yielded decreased estimated BS support and concordance factor values, while the 

1195 factor value differences of the clade and backbone branches increased strongly compared to the 

1196 original datasets (Table S10). Therefore, we conclude that the locus length reduction had a 

1197 substantially negative impact on the phylogenetic inference. This is in line with findings by 

1198 studies comparing the inference performance over varying locus lengths and information 

1199 contents (e.g. Mirarab et al., 2014, 2016; Xi et al., 2015; Chou et al., 2016; Xu and Yang, 2016; 

1200 Molloy and Warnow, 2018).

1201 However, we performed a drastic locus length reduction by 2/3, which resulted in an 

1202 average locus length of 120/123nt (Table 1). As we found during locus filtering (see 2.5) and 

1203 phylogenetic inference of the resulting datasets, an average locus length of 373nt (±43nt) in an 

1204 assembly range of 300-450nt yielded sufficient phylogenetic information per locus and in total 

1205 for successful CB-SM inference. Other empirical studies using similar or even shorter length 

1206 ranges also achieved a successful CB-SM inference of the assembled data (e.g. Curto et al., 

1207 2018; Rancilhac et al., 2019).  Based on our results, and as found by numerous studies (e.g., 

1208 Gatesy and Springer, 2014; Lanier et al., 2014; Liu et al., 2015; Xi et al., 2015; Hosner et al., 

1209 2016; Huang and Knowles, 2016; Blom et al., 2017; Sayyari et al., 2017; Xu and Yang, 2016; 

1210 Lee et al., 2018), we suggest that locus quality in terms of the information content and its 

1211 distribution across the assembly and taxa is of greater importance than mere locus length. Yet, 

1212 this also strongly depends on the taxonomic level, i.e. sequence divergence, of the study group.

1213

1214



1215 4.3.4 On the accuracy of the Aichryson phylogeny

1216 The accuracy of the phylogenetic outcome is the suggested by the emerging congruence 

1217 of the CA-ML and CB-SM reconstructions with increasing data quality. Inference of the 

1218 “int_301-450” dataset yielded overall congruent, similarly well-supported topologies as well as 

1219 similar concordance factor values and differences. In addition, the phylogenetic pattern matches 

1220 the species distributions. For instance, the species occurring on Madeira (A. divaricatum, A. 

1221 dumosum, A. villosum) and the two A. tortuosum subspecies occurring on the eastern Canary 

1222 Islands, Lanzarote (subsp. tortuosum) and Fuerteventura (subsp. bethencourtianum), each form 

1223 a monophyletic group. The polyphyletic status of the A. pachycaulon subspecies is also 

1224 consistent with previous studies (Mort et al., 2002; Fairfield et al., 2004). 

1225 However, as Goethe put it: „We know accurately only when we know little; with 

1226 knowledge, doubt increases” (von Goethe, 2012, published postum). 1) Aichryson is not a 

1227 model group and lacks comparable studies in terms of data properties (locus length, sequence 

1228 variation, missingness), data analysis (data assembly, locus filtering) and phylogenetic 

1229 inference. 2) We did not statistically assess potential variation in phylogenetic inference of the 

1230 filtered datasets using multiple replicates. 3) The extent to which phylogenetic inference may 

1231 be impacted by terraces due to artificial conflicts among clades arising from the data structure 

1232 herein is unclear (Sanderson et al., 2010, 2011, 2015; Simmons, 2012; Dobrin et al., 2018). 4) 

1233 Although locus properties gained quality and sample coverage became more even, the low 

1234 concordance factor values of some backbone branches representing the relationships of clades 

1235 2+3+4 to clade 5 and high concordance factor value differences of the within clade branches of 

1236 clade 5 suggest a strong conflict among clades and taxa, respectively (Minh et al., 2020a, b). 

1237 However, we cannot assess whether this incongruence of information among locus trees is a 

1238 true biological signal due to reticulate evolution or an artifact of the data structure. 5) In 

1239 addition, the ongoing, sometimes heated debate over the most accurate application, analysis, 

1240 and inference of a variety of  RRL/SRS-based approaches, along with a series of comparisons 



1241 of divergent concepts and opinions, further complicate the interpretation of the results (e.g. de 

1242 Queiroz and Gatesy 2007; Edwards et al., 2007, 2016; Kubatko and Degnan 2007; Degnan and 

1243 Rosenberg, 2009; Knowles, 2009; Leaché and Rannala, 2011; Song et al., 2012; Gatesy and 

1244 Springer, 2013, 2014; Springer and Gatesy 2014, 2016, 2018; Mirarab et al., 2014b, 2015, 2016; 

1245 Chou et al., 2015; Roch and Steel 2015; Mirarab and Warnow 2015;  Solís-Lemus et al., 2016; 

1246 Mendes and Hahn, 2018; Molloy and Warnow, 2018; Bryant and Hahn, 2020; Rannala et al., 

1247 2020). In particular, the inference accuracy of CA-ML in the presence of gene tree-species tree 

1248 discordance (Degnan and Rosenberg, 2006, 2009; Kubatko and Degnan, 2007; Knowles, 2009; 

1249 Roch and Steel, 2015; Solís-Lemus et al., 2016; Mendes and Hahn, 2018; Bryant and Hahn, 

1250 2020) and the performance of CB-SM under conditions of GTEE (Springer and Gatesy, 2014, 

1251 2016; Roch and Warnow, 2015; Xi et al., 2015, 2016; Solís-Lemus et al., 2016; Xu and Yang, 

1252 2016; Sayyari et al., 2017; Molloy and Warnow, 2018) raise concerns.

1253  In general, CA-ML and CB-SM are expected to yield congruent results under less 

1254 challenging conditions of gene tree-species tree discordance (Edwards et al., 2007; Kubatko 

1255 and Degnan, 2007; Leaché and Rannala, 2011). Comparative studies showed that CA-ML and 

1256 CB-SM performed equally under various levels of ILS, with CA-ML performing more accurate 

1257 under challenging GTEE conditions (Chou et al., 2015; Xi et al., 2015, 2016; Mirarab et al., 

1258 2016; Sayyari et al., 2017; Molloy and Warnow, 2018). Moreover, inference of empirical data 

1259 using both approaches generally yielded congruent results (e.g. Chiari et al., 2012; Hosner et 

1260 al., 2016; Blom et al., 2017; Sayyari et al., 2017; Curto et al., 2018;  Rancilhac et al., 2019). 

1261 The bottom line is that we cannot ultimately assess the accuracy of the species tree for 

1262 Aichryson, still, we construe the overall congruence as supporting the accuracy of the 

1263 phylogenetic outcome. 

1264

1265



1266 4.4 Conclusion

1267 The methodology presented in this study successfully led to a coalescent-based 

1268 inference of our focal group Aichryson. For some, however, the series of approaches tested by 

1269 us may be equivalent to a butcher making "phylogenetic sausage” (for the definition of a 

1270 "phylogenetic sausage" see: Gatesy and Springer, 2014; see further: Springer and Gatesy, 

1271 2016, 2018; Bryant and Hahn, 2020; Fernández et al., 2020; Rannala et al., 2020). 

1272 Admittedly, all methodological components could be modified and improved in many ways. 

1273 The resulting data were also quite demanding to analyze. Still, particularly the challenging 

1274 data structure provided the opportunity to gain further valuable insights to drive the 

1275 development of fast and reliable RRL-SRS approaches. 1) Minor modifications of the 

1276 RADseq toolbox regarding fragment size selection and sequencing range yielded a strongly 

1277 reduced locus set of extended length. 2) Evaluation of a few metrics enabled an informed 

1278 selection of clustering thresholds for data assembly within and across samples. 3) Simple 

1279 descriptive statistics of the resulting assembly were useful for an initial assessment of the data 

1280 structure. 4) Locus filtering greatly assisted to identify assembly areas of presumably biased 

1281 locus and taxon coverage. 5) Comparative evaluation of phylogenetic patterns, such as 

1282 terrace-like branches, BS support values and concordance factor values highlighted the 

1283 importance of data quality over mere quantity, in particular for the coalescent-based summary 

1284 method.

1285 We are convinced that the combination of highly flexible RRL-SRS laboratory, data analysis, 

1286 and inference approaches is crucial for a fast and reliable biodiversity exploration. Hence, we 

1287 highly encourage the community to: 1) modify the extensive RADseq toolbox regarding an 

1288 extended fragment length and sequencing range, 2) reduce the data quantity in favor of data 

1289 quality, 3) utilize approaches guiding an informed threshold selection for accurate clustering, 

1290 4) thoroughly analyze and test the resulting assembly and locus properties for potential biases, 



1291 5) and to compare and evaluate the resulting phylogenetic trends using multiple inference 

1292 approaches. 
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1846 Table 1. The properties of the unfiltered “raw” assembly, the “cleansed” dataset, the datasets 

1847 selected by locus filtering and their length truncated variants.

dataset raw cleansed int_251-
500

int_301-
450

int_251-
500_short

int_301-
450_short

loci 3,818 3,225 2,788 1,599 2,788 1,599

VAR total 71,691 68,490 56,448 33,480 18,590 10,625

VAR per 
locus

18.78 
(±16.69)

21.24 
(±16.82)

20.24 
(±15.70)

20.94 
(±16.15)

6.67 
(±5.65)

6.65 
(±5.63)

SNPs total 36,413 33,261 26,533 15,673 8,779 5,040

SNPs per 
locus

9.54 
(±5.25)

10.31 
(±9.89)

9.51 
(±8.66)

9.80 
(±8.86)

3.15 
(±3.17)

3.15 
(±3.16)

PIS total 35,278 35,229 29,915 17,807 9,811 5,585

PIS per locus 9.24 
(±10.73)

10.92 
(±10.86)

10.73 
(±10.67)

11.14 
(±11.05)

3.52 
(±3.93)

3.49 
(±3.91)

unlinked PICs 
total

2,723  2,220 1,287   

locus 
coverage

8.86 
(±5.25)

9.37 
(±5.45)

9.67 
(±5.57)

9.96 (+-
5.62)

9.67 
(±5.57)

9.96 (+-
5.62)

sample 
coverage

1,166 
(±467)

 930 
(±333)

549 
(±204)

  

missingness 
avg. [%]

69.79 67.69 66.66 65.64 66.66 65.64

locus length 
avg. [nt]

376 (±93) 379 (±93) 360 (±70) 373 (±43) 120 (±23) 123 (±18)

1848

1849 Given are the total number of loci (loci), the total and average values per locus (standard 

1850 deviations in parentheses) for the number of variable sites (VAR), single nucleotide 

1851 polymorphisms (SNPs), and parsimony informative sites (PIS), the total number of unlinked 

1852 PICs as input for SVD inference, and the average locus coverage (samples per locus), sample 

1853 coverage (loci per sample), the average proportion of missingness [%] and the average locus 

1854 length [nt]. 



1855 Table 2. Bootstrap support values and concordance factor values and differences of the 

1856 inferred datasets using CA-ML, CB-SM and SVD. 

inference 
method

CA-ML CB-SM SVD

dataset raw int_25
1-500

int_30
1-450

raw int_25
1-500

int_30
1-450

raw int_25
1-500

int_30
1-450

BS 
backbone 
branches

86.80 99.20 99.20 83.06 90.14 96.70 100 100 100

BS clade 
branches

94.80 100 99.60 99.92 99.98 99.08 100 100 100

BS 
within 
clade 
branches

93.71 95.29 94.41 80.25 83.92 83.94 100 100 100

BS all 
branches

92.63 96.89 96.26 84.41 88.05 89.10 100 100 100

CF clade 
1

44.4; 
69.2; 
24.8

44.5; 
68.8; 
24.4

46.7; 
69.4; 
22.7

45.4; 
69.1; 
23.8

45.0; 
68.0; 
23.0

47.9; 
68.7; 
20.7

45.6; 
70.0; 
24.4

44.5; 
69.0; 
24.6

45.1; 
61.3; 
16.2

CF clade 
2+3

48.1; 
62.3; 
14.2

48.7; 
62.3; 
13.6

50.0; 
58.5; 
8.5

42.6; 
72.4; 
29.8

43.1; 
72.8; 
29.7

44.6; 
70.0; 
25.4

43.2; 
72.1; 
28.8

41.8; 
71.7; 
29.9

43.1; 
73.7; 
30.6

CF clade 
4

40.1; 
64.1; 
24.0

40.5; 
64.5; 
24.1

42.5; 
66.1; 
23.6

36.4; 
60.1; 
23.7
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1858 Given are the average BS support values (sectional and total) and the average gene (gCF) and 

1859 site concordance factor (sCF) values (of the within clade branches, the clade branches and 

1860 backbone branches) of the inferred datasets ("raw", "int_251-500", "int_301-450", "int_251-

1861 500_short", "int_301-450_short") using CA-ML, CB-SM and SVD. The average concordance 

1862 factor (CF) values are shown in this order: gCF; sCF; gCF-sCF-difference.
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Figure 1. The lab workflow of the modified RADseq protocol consists of six steps (a – f). a) 

Genomic DNA is digested simultaneously using the REases BamHI and KpnI. b) Barcode and 

common adapters are ligated to the fragments. c) The barcoded samples are multiplexed and 

purified. d) The pool is size selected to a 350 – 720 bp length range using Pippin Prep. e) The 

size selected pool is amplified using a low-cycle 2-step PCR. f) The final purification using 

magnetic beads removes PCR and size selection artifacts. 
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Figure 2. The schematic overview of the data analysis is split into four major parts (a-d, 

boxes on the right side). The boxes in light blue indicate sub-/datasets. Dashed arrows 

illustrate parameter applications between datasets. Colored box edges show the software used 

for the work step. During the raw read processing (a) the quality is assessed using FastQC, the 

reads are demultiplexed two times with respect to the REase cut sites and the sample specific 

barcodes, combined into sample fasta files, and adapter and cut sites are removed using 

cutadapt. For the clustering threshold (CT) selection approach (b), the data set is split based 

on the assumed ploidy and the ipyrad parameters are adjusted as required. For in-sample-

clustering (ISC) a CT range of 0.81 – 0.99 is tested for both datasets and ipyrad outputs are 

evaluated with respect to the number of total clusters, total average read depth, clusters 

rejected by maxH (flagged paralogs) and heterozygosity (Fig. 3a and b). The selected ISC 

assemblies are merged and branched to test the CT range (see above) for between-sample-

clustering (BSC). The resulting assemblies are evaluated with respect to the number of 

retained loci, the retained sequence variation (VAR), missingness and the number of new 

polymorphic loci (NPL, Fig. 3c). The selected “raw” assembly is used for initial phylogenetic 

inference and clade definition (c). The locus properties (locus ID, length, number of samples, 

number of SNPs, PIS and VAR) are parsed using a customized script. Loci showing no 

variation and chloroplast loci are removed. The loci of the “cleansed” dataset are filtered into 

several sub-datasets based on their properties. The first locus filtering approach, using a 

missingness threshold for dataset selection, resulted in the “int_251-500” dataset. The second 

filtering approach, using sub-dataset properties and resulting phylogenetic patterns for dataset 

selection, resulted in the “int_301-450” dataset. The truncated loci of the “raw” assembly 

were re-arranged based on the selected datasets of the locus filtering (locus truncation, dashed 

arrows). The datasets (“raw”, “int_251-500”, “int_301-450” and “short”) are used for 

comparative phylogenetic inference (d). Individual loci are either concatenated using 

FASconCAT for CA-ML inference or used to calculate ML locus trees as input for CB-SM 
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inference. The SVD datasets are created by picking a single randomly selected parsimony 

informative character (PIC) of each locus. To assess the resulting trees of the tested inference 

methods across datasets, we compared changes in BS support values and gene (gCF) and site 

concordance factor (sCF) values. 
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Figure 3. To determine suitable thresholds for in-sample-clustering (ISC) and between-

sample-clustering (BSC), trends of several metrics tested across a CT range of 0.81-0.99 were 

evaluated. For ISC threshold selection of the diploid (a) and tetraploid (b) samples, the 

number of clusters, the average read depth, flagged paralogs (filtered by maxH) and the allelic 

variation (heterozygosity) were recorded and plotted. Transition zones from the over- to the 

undermerging area containing several suitable CTs are shaded in grey. CTs within these zones 

were averaged to a consensus CT. To select a suitable threshold for clustering between 

samples of the merged ISC assemblies, the number of retained loci, the retained sequence 

variation (VAR), the missingness and the number of new polymorphic loci (NPL) were 

recorded (c). The “hockey stick signal” in the NPL plot, which indicates the assembly 

containing most accurately clustered sequence variation, is in line with the requirements for 

the other metrics.  

Figure Click here to access/download;Figure;Figure_3_caption.docx

https://www.editorialmanager.com/mpe/download.aspx?id=107777&guid=8a017d1e-fa5a-4f7b-8f41-e581f1ad2021&scheme=1
https://www.editorialmanager.com/mpe/download.aspx?id=107777&guid=8a017d1e-fa5a-4f7b-8f41-e581f1ad2021&scheme=1


 

Figure Click here to access/download;Figure;Figure_4.docx

https://www.editorialmanager.com/mpe/download.aspx?id=107778&guid=65debad5-2d05-494f-9b2d-5275d5ad3f4b&scheme=1
https://www.editorialmanager.com/mpe/download.aspx?id=107778&guid=65debad5-2d05-494f-9b2d-5275d5ad3f4b&scheme=1


Figure 4. The loci of the „cleansed” assembly were rearranged into sub-datasets based on the 

minimum number of samples required (a), the minimum variability required (b) and locus 

length intervals (c). For each sub-dataset, properties such as the number of retained loci 

(upper plots, purple line with data points), sequence variation (orange=VAR, green=SNPs, 

yellow=PIS), the average missingness (middle plots, purple line with data points) and average 

locus length (orange line) were recorded. The average BS support values of the resulting CB-

SM trees are given in total (bottom plots, green line with data points) and for the three 

sections (purple=backbone branches, orange=clade branches, yellow=within clade branches).  
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Figure 5. The CA-ML (a) and CB-SM (b) phylogenies of the “int_301-450” dataset. 

Bootstrap support, gene and site concordance factor values are given above branches. Clades 

are indicated by the encircled numbers 1-5. Boxes shaded in light and dark gray indicate 

diploid and tetraploid samples, respectively. The sample A. porphyrogennetos A12_J16 

showed an intermediate genome size and was treated as tetraploid (black box).  
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